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ABSTRACT
Generative models, especially in information systems like ChatGPT
and Bing Chat, have become increasingly integral to our daily lives.
Their significance lies in their potential to revolutionize how we
access, process, and generate information [44]. However, a gap
exists in ensuring these systems are accessible to all, especially con-
sidering the literacy challenges faced by a significant portion of the
population in (but not limited to) English-speaking countries. This
paper aims to investigate the “readability” of generative information
systems and their accessibility barriers, particularly for those with
literacy challenges. Using popular instruction fine-tuning datasets,
we found that this training data could produce systems that gen-
erate at a college level, potentially excluding a large demographic.
Our research methods involved analyzing the responses of popular
Large Language Models (LLMs) and examining potential biases in
how they can be trained. The key message is the urgent need for in-
clusivity in systems incorporating generative models, such as those
studied by the Information Retrieval (IR) community. Our findings
indicate that current generative systems might not be accessible
to individuals with cognitive and literacy challenges, emphasizing
the importance of ensuring that advancements in this field benefit
everyone. By situating our research within the sphere of informa-
tion seeking and retrieval, we underscore the essential role of these
technologies in augmenting accessibility and efficiency of infor-
mation access, thereby broadening their reach and enhancing user
engagement.
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1 INTRODUCTION
In recent years, generative Large Language Models (LLMs) have no-
tably impacted various aspects of our lives, from howwe search (e.g.,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHIIR ’24, March 10–14, 2024, Sheffield, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0434-5/24/03
https://doi.org/10.1145/3627508.3638345

Bing Chat1, Bard2) code (e.g., Github Copilot3) write (e.g., Jasper.ai4,
Copy.ai5) and even conduct the research (e.g., retrieval augmented
generation [8, 49, 54], systematic reviews [111, 112], relevance as-
sessment [40, 106]). At the same time, there is an increased emphasis
on improving these systems’ trustworthiness [33, 69, 88], reducing
bias [41], and enhancing their usefulness for end users [9, 46].

Despite these advancements, generative information systems
have seen notable failures [67] with some leading to concerning
outcomes [29]. While not all negative outcomes will be so serious,
they may still negatively affect large portions of society. Accord-
ingly, this paper addresses the oft-neglected issue of accessibility
in generative systems for individuals with lower literacy levels,
framing it within the realm of information seeking and retrieval.
The underlying hypothesis, subsequently supported in our find-
ings, is that current development trends in IR may unintentionally
focus mainly on users with standard linguistic abilities. This raises
significant concerns about inclusivity and equitable access, under-
scoring the necessity for a more inclusive approach in the design
and development of generative systems.

The Organisation for Economic Co-operation and Development
(OECD)’s Programme for the International Assessment of Adult
Competencies (PIAAC) reveals concerning literacy rates in coun-
tries including the United States of America (USA), Canada, the
United Kingdom (UK), Ireland, and Australia [107], indicating that
n average of 3-4% of the surveyed population could be classified
as “functionally illiterate,” with scores beneath Level 1 (Figure 1).
Additionally, the percentage of participants who scored at or below
Level 2 ranged from 39% in Australia to 55% in Ireland. According to
Figure 1, individuals with scores at or beneath Level 2 usually face
challenges when engaging with extensive texts or when required
to perform detailed multi-step reasoning based on the text [107].6.

Considering the UK Government’s and WCAG’s recommenda-
tions for elementary-level writing [99, 110], there is a clear necessity
to design generative information systems that cater to these indi-
viduals. Such design would ensure individuals facing challenges in
reading, like those with low literacy or cognitive impairments, are
not excluded from the benefits these systems offer. 7 Here, accessi-
bility encompasses two facets: formulating queries (or prompts) and
comprehending the system’s response. Either of these could pose
difficulties for those with low literacy. In this paper, we choose to

1https://www.microsoft.com/en-us/edge/features/bing-chat
2https://bard.google.com/
3https://github.com/features/copilot
4https://www.jasper.ai/
5https://www.copy.ai/
6For additional context, in the USA, 52% of respondents scored at Level 2 or lower [91],
corroborating other studies suggesting that the mean literacy level for American adults
falls between the 6th and 8th grades [32, 64, 102]
7A more holistic solution would be to enhance the availability and quality of lifelong
education for everyone, recognizing, however, that this calls for profound societal
transformation.
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concentrate predominantly on the comprehension aspect of system
responses, given its comparative ease of analysis.

This work focuses on generated response comprehension, given
its relative ease of analysis for those with low literacy. We begin
by outlining criteria for text readability and explore its impact on
users with low literacy and cognitive impairments (Section 2). De-
spite the PIAAC results revealing significant reading challenges
in countries known for high research outputs, there are research
gaps in the fields of IR and information science in understanding
how these difficulties affect users’ information retrieval abilities
(Section 2.2). This oversight may be because many IR and IS re-
searchers do not specialize in accessibility or cognitive sciences. In
highlighting these accessibility issues, our goal is to further bring
attention and consideration to the IR community. We argue that
enhancing accessibility is not just ethically crucial but also essential
for improving the effectiveness and reach of generative information
systems. Moreover, we question whether genuine progress in the
field can be achieved without ensuring universal accessibility.

This study focuses on the training methodologies of generative
models and their baseline response generation, analyzing the read-
ability of “ideal” responses from three prominent instruction fine-
tuning datasets: Alpaca [104], Dolly [27], and self-instruct [113].
Our findings indicate that these responses typically cater to a col-
legiate audience or feature complex, technical language. However,
these datasets may not fully represent the training data of well-
known LLMs. We extended our analysis to five LLMs, including
GPT-3.5-Turbo, GPT-4, PaLM2, Llama2-7b, and Falcon-7b, using
the Alpaca dataset. All models, without specific prompts, consis-
tently produced responses akin to college-level writing, with some
showing tendencies towards lower grade-level responses but still
maintaining a high level of sophistication. This highlights the im-
portance of thoughtful integration of these models into information
systems, considering their response characteristics and audience.8

Generative model training often involves reinforcement learning
with human interaction feedback. Thus, it is essential to carefully
examine the sources of this feedback and the methods by which
it is collected. More specifically, providing a clear target audience
during feedback solicitation may help to mitigate a likely bias to-
wards the preferences of highly literate individuals. The readability
and adaptability of these models should also consider users who
communicate in variants of English such as dialects, creoles, or
pidgins, rather than just the “standard” version as taught in schools.
An illustrative case study involving Jamaican Patois revealed that
models often default to standard English without specific prompts,
potentially indicating a misalignment with the user’s intent. Such
disparity between the user’s question and the model’s answer can
lead to a compromised user experience and may drive users away
from interacting with such a system. Finally, based on the results
presented in the paper, we discuss strategies and research for de-
veloping inclusive systems that cater to diverse users, including
those with low literacy, ensuring equitable information access. This
approach is vital for advancing the field of IR and achieving greater
impact within the broader community.

8All experimental results and scripts are available at https://github.com/aroegies/llm-
readability.

Level 1
Most of the tasks at this level require the respondent to read relatively
short digital or print continuous, non-continuous, or mixed texts to
locate a single piece of information that is identical to or synonymous
with the information given in the question or directive. Some tasks, such
as those involving non-continuous texts, may require the respondent to
enter personal information onto a document. Little, if any, competing
information is present. Some tasks may require simple cycling through
more than one piece of information. Knowledge and skill in recognizing
basic vocabulary, determining the meaning of sentences, and reading
paragraphs of text are expected.

Level 2
At this level, the medium of texts may be digital or printed, and texts
may comprise continuous, non-continuous, or mixed types. Tasks at
this level require respondents to make matches between the text and
information andmay require paraphrasing or low-level inferences. Some
competing pieces of information may be present. Some tasks require
the respondent to: cycle through or integrate two or more pieces of
information based on criteria; compare and contrast or reason about
the information requested in the question; navigate within digital texts
to access and identify information from various parts of a document.

Figure 1: Descriptions of Level 1 and Level 2 according to the
OECD’s PIAAC study and reproduced from Canada’s PIAAC
report [107].

2 BACKGROUND
Reading comprehension is the capacity to understand, apply, reflect
upon, and engage with written content to achieve personal goals,
enhance one’s knowledge and skills, and actively contribute to
societal activities [82]. Accordingly, it forms a foundation for how
users interact with information systems and even more so with
the incorporation of generative models into those systems. For the
IR community, this aspect highlights the essential need for these
sophisticated systems to be accessible and understandable to a
broad spectrum of users, encompassing various literacy levels. In
doing so, advancements in technology are not just innovative but
also inclusive and user-friendly.

2.1 Readability Metrics and IR
Assessing readability in IR contexts is crucial, as it directly impacts
how users interact with and comprehend information presented
by generative models. The complexity of subjective readability per-
ception, affected by a variety of factors such as language, legibility,
and syntactic and semantic complexities [10, 59] poses a challenge
across domains, including IR. Our study’s focus on U.S. readability
metrics is particularly relevant for the IR community due to: (i)
the U.S. government’s emphasis on plain language in official docu-
ments [1, 2, 79] and the trend of U.S. newspapers targeting a ninth-
grade reading level [58], mirroring the need for clear information
presentation in IR systems; (ii) the leadership of U.S.-based organi-
zations in artificial intelligence (AI) development, with key contri-
butions from Google’s PaLM2/Bard [6], Facebook’s Llama2 [109],
and OpenAI’s GPT models [81, 83], indicating the potential global
impact of U.S. readability standards; and (iii) the extensive U.S. read-
ability metrics aligned with its grade levels [26, 30, 43, 61, 75, 98],
offering a robust framework for text clarity assessment.
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Readability metrics mainly consist of two elements: the com-
plexity of the words used and the length of the content [68]. These
elements are weighted differently depending on the specific met-
ric producing readability scores. Readability scores can often be
translated into an estimate of the “years of education required to
understand the content”, which can provide a general idea of the
reading grade level [28]. In this work, we are primarily concerned
with directional accuracy (i.e., a rough estimate of how well gener-
ative models write). Therefore, we categorize responses into four
buckets based on the estimated grade level or years of education:
≤ 6 years, 7 − 9 years, 10 − 12 years, > 12 years (i.e., college-level
writing), which mirrors that of WCAG [110]. To balance out the
different possible ways to formulate the readability components,
our work relies on three measures provided by the py-readability-
metrics package.9 We provide brief descriptions of these measures
to inform subsequent discussions. It is important to mention that
the library does not evaluate content shorter than 100 words.

2.1.1 Flesch-Kincaid[61]. The Flesch-Kincaid metric evolved from
the earlier Flesch reading ease score [43], which has been used
to regulate the readability of insurance policies in several U.S.
states [1, 2]. The Flesch-Kincaid metric calculates readability using
two components: the average words per sentence for length, and the
average syllables per word for difficulty, with more emphasis placed
on the latter. While the metric lacks a definitive upper limit for its
score (i.e., years of education), in practice, exceedingly high scores
are atypical unless the text is unusually lengthy or adversarial.

2.1.2 Coleman-Liau[26]. Developed by Coleman and Liau, this
metric employs a straightforward approach to gauge word complex-
ity by counting characters, rather than relying on syllable counts
or other metrics. This method bears resemblance to the Automated
Readability Index [98]. Coleman-Liau uses the average number of
sentences per 100 words as the length component and the average
number of characters per 100 words as its difficulty component, as
opposed to the approach of the Automated Readability Index which
uses aggregate counts of both.

2.1.3 Dale-Chall[30]. Edgar Dale and Jeanne Chall introduced a
method to streamline the assessment of word complexity by utiliz-
ing a list of words recognized by a majority of fourth-grade students.
The initial 1948 list contained 763 words familiar to 80% of these
students [30], and a subsequent 1995 revision expanded this to 3,000
words [22]. The measure calculates the average words per sentence
for length, while word difficulty is determined by the percentage
of words in a sentence not present in the word list. However, it
is important to note that due to the inherent nature of these lists,
technical texts may receive higher scores, potentially leading to a
bias in model responses to technical inquiries.

9https://github.com/cdimascio/py-readability-metrics

2.2 Reading Comprehension, Cognitive
Impairment, and Literacy

Individuals with cognitive impairment10 often face challenges in
processing online text due to impacted cognitive functions like lan-
guage, memory, attention, and executive functions. [73, 100, 105]. In
terms of literacy, illiterate people often struggle to process difficult
texts due to their limited reading abilities and lack of familiarity
with words and concepts [114]. The lack of basic reading and writ-
ing skills can limit their ability to comprehend complex information
and navigate through written texts [85]. Additionally, illiteracy can
lead to functional and cognitive alterations, which may further
hinder their cognitive processing abilities [86]. By considering the
cognitive processing underpinning literacy limitations and cogni-
tive impairment, we can better tailor responses from generative
information systems. Readability metrics, such as those in Section
2.1, are widely recognized for predicting text difficulty, rooted in
general text comprehension and processing [4]. Studies have ex-
plored the use of these metrics to address text complexity (e.g.,
Flesch-Kincaid and Coleman-Liau indices), word complexity (e.g.,
Dale-Chall formula), and text length [15]. While we focus on lit-
eracy in this work due to easily accessed measures, addressing all
aspects of reading comprehension (e.g., impairments) is vital for
the IR community. In doing so, the development of more inclusive
and user-friendly systems, considering the full spectrum of user
abilities and needs, can be facilitated. Addressing text complexity
with readability metrics is a key step in aligning advanced language
technologies with the varied cognitive needs of users.

2.3 IR, Cognitive Impairments, and Literacy
Recent advancements in generative LLMs have substantially im-
proved natural language processing, leading to more coherent, con-
textually appropriate, and, to some extent, readable texts [62, 89].
These advances also enhance the model’s adaptability to user needs
in information-seeking tasks[77]. When integrated with IR sys-
tems [3, 8, 49, 54] and methodologies [40, 106, 111, 112], they hold
the promise of elevating a user’s information discovery experience.
Such experience improvements, however, should be not be limited
to those with neurotypical abilities, higher levels of education, or
other factors that might disqualify a user from benefiting from
these improvements. Such an approach aligns with one of the IR
field’s goals of effective and user-friendly information access.

Despite ongoing research on information-seeking within the IR
context [17, 18, 52], the evaluation of generative systems in aid-
ing individuals with learning disabilities remains under-explored,
marking a novel area of contribution for this work. This gap be-
comes increasingly relevant with the shift towards conversational
search and the integration of generative models in IR [3, 49, 54].
Cognitive impairments add complexity to the search process, af-
fecting aspects such as keyword creation, search refinement tool
usage, and information credibility assessment [24, 84]. Individuals
with impairments face unique challenges that are tied to the tasks
of reading and writing in addition to difficulty in rapid automa-
tized naming and reduced short-term memory capacity [25, 63].

10We follow Berget and MacFarlane [17] and use cognitive impairment to include
learning impairments (e.g., dyslexia,) as well as other conditions like autism spectrum
disorder and aphasia.
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These challenges could potentially influence their interaction and
engagement with generative information systems, in particular, if
the content accessibility and readability do not sufficiently support
their needs (e.g., word choice and length, layout). Furthermore, the
applicability of existing models to users with impairments might
be limited [17, 18] as generative systems become commonplace. To
address these issues, there is a need to apply readability indices
and personalization in the design of generative system interfaces,
ensuring content accessibility and alignment with user compre-
hension levels, thereby facilitating a more intuitive and effective
information-seeking process.

Literacy significantly impacts the interaction with information,
shaping competencies in navigation, evaluation, and utilization.
The correlation between text readability and a user’s literacy level
presents a challenge that generative models must overcome to guar-
antee equitable information access for all users. Despite adaptive
efforts by generative models, Murgia et al. [77] highlights con-
tinuing challenges in aligning individual literacy and readability
standards [56]. In particular, Murgia et al. found that children often
stumble upon understanding unfamiliar terms and specific lexicons
within responses generated by systems like ChatGPT. Furthermore,
it is important to highlight that despite efforts to adjust the content
to age or grade-based literacy levels, the discrepancies in text com-
prehension and search aid required persist [51]. Neglecting these
literacy challenges risks marginalizing users with lower literacy,
exacerbating the digital divide. Therefore, this research emphasizes
the importance of developing literacy-adapted systems in IR to
bridge this gap and promote a fair digital environment. This ap-
proach continues work done by others [16, 18] but highlights the
novel aspect that naïve incorporation of generative models into
information systems will invariably yield disparity in usability and
user experience for those that struggle with literacy.

2.4 Fairness, Transparency, Safety and Other
Concepts

The primary focus of this paper is to shed light on accessibility
concerns for generative models and the systems that incorporate
them as they manifest for users with low literacy and cognitive
impairments. While it is beyond is beyond the scope of this work
to produce a summary of work, it is important to highlight the
multitude of research that has been undertaken to understand and
reduce bias [14, 31, 38, 45, 47, 116], improve helpfulness, safety and
information quality [9, 11, 12, 37, 46, 65, 120], and increase trans-
parency [7, 13, 50, 70, 76, 87, 93] across the IR, machine learning,
and associated communities. Despite the research efforts, there is
an often overlooked set of interconnected factors: the cognitive
abilities, literacy and education level of users. If we truly wish to
build fair, accountable, transparent, safe and accessible systems then
it is imperative to address the biases and challenges faced by users
with low literacy and cognitive impairments. By not doing so, we
lessen the impact of all of the work we do by limiting its ability
to impact and positively change the lives of people who currently
may find systems to be inaccessible or outside of their abilities.

3 GENERATIVE LLM TRAINING DATA
The internet has served as a foundational platform for the pre-
training of generative models [90]. This pre-training can span a
wide range of writing levels, styles, and language use. However, it
is reasonable to assume that many models have been pre-trained on
curated collections, such as reputable news outlets and Wikipedia,
which typically offer higher quality writing [81, 95, 117]. Further,
this pre-training may teach models how to generate text but not
necessarily how to appropriately generate a response. In contrast,
instruction fine-tuning [34, 55, 115] has played a pivotal role in
the broader adoption of these models, exemplified by the success
of ChatGPT [80]. This is largely due to the reduced training over-
head when building upon pre-trained foundation models. While
the initial pre-training phase shapes a model’s text generation ca-
pabilities, we argue that instruction fine-tuning provides a more
targeted approach to modulating a model’s writing style and level.
In this section, we apply the readability metrics (Section 2.1) to
assess instruction fine-tuning datasets. Our aim is to understand
how these “benchmark” responses might influence the outputs of
models trained on them, potentially posing challenges for users
with lower literacy levels and/or cognitive impairments.

3.1 Datasets
This section provides an overview of the instruction fine-tuning
datasets of interest and details any specific instructions used to
generate the responses either by a generative model or a human
(e.g., response length, writing style).

3.1.1 Self-instruct [113]. The self-instruct dataset comprises 82,612
instruction-response pairs. These were produced using a bootstrap-
ping method with GPT-3 ("davinci"). Starting with a foundational
set of 175 human-curated tasks, GPT-3 was employed to create
additional instructions and subsequently generate outputs based
on those instructions. Instead of resorting to prompt engineering,
the dataset creators adjusted various hyperparameters of GPT-3 for
each phase. For instance, during the instruction generation phase,
GPT-3 was configured with a token limit of 1,024 and a temperature
setting of 0.7. However, for producing outputs corresponding to
these instructions, the token limit was set to 300 with a temperature
of 0. Filtering was performed at various stages to ensure the diver-
sity of instructions and their responses. Finally, the base model had
the freedom to generate instructions and responses within these
defined parameters but had no other constraints.

3.1.2 Alpaca [104]. The Standford Alpaca dataset comprises 52,002
instruction-response pairs, derived from the self-instruct dataset.
This dataset differentiates itself by utilizing text-davinci-003 rather
than davinci. Additionally, it produces only one response per in-
struction and incorporates an initial prompt to guide the model’s
generation process. For this work, the prompt directs the model to
ensure diversity in the instructions it creates, to keep the instruction
to a maximum of two sentences, and to limit the response to less
than 100 words. The prompt biases the model to attempt to produce
short pieces of text despite being given an explicit maximum token
length of 3,072 in the API call to OpenAI. Interestingly, this is the
only dataset out of the three examined to constrain the responses
to achieve “more readable” content.
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U.S. Grade Level
Method ≤ 6 7 − 9 10 − 12 > 12

Flesch-Kincaid 714 1330 1316 1867
Coleman-Liau 639 1385 1377 1826
Dale-Chall 151 1124 848 3104

Table 1: Readability scores by U.S. grade-level bucket for
the Alpaca instruction fine-tuning dataset[104] for the 5,227
instances out of 52,0002 that were long enough to be scored
with an average length of 159.9 words.

U.S. Grade Level
Method ≤ 6 7 − 9 10 − 12 > 12

Flesch-Kincaid 258 648 787 773
Coleman-Liau 203 730 943 590
Dale-Chall 39 573 456 1398

Table 2: Readability scores by U.S. grade-level bucket for the
Dolly instruction dataset[27] for the 2,466 instances out of
15,011 that were long enough to be scored with an average
length of 234.4 words.

3.1.3 Dolly [27]. The Dolly dataset, databricks-dolly-15k, consists
of 15,011 instructions generated by employees of Databricks in
March and April 2023. Both the instruction and ideal response are
generated by humans with no machine involvement. There may be
additional context provided as input in the form of Wikipedia pas-
sages for certain instruction types (e.g., summarization and closed-
book question answering). The authors note that while deliberate
obscenities, intellectual property, or private individual information
should be absent, the dataset might still reflect inherent Wikipedia
biases and the personal inclinations of Databricks employees.

3.2 Dataset Readability
Across all three datasets (Tables 1, 2, and 3), we see that very few
instances can be scored for readability due to the length requirement
of the underlying library. While shorter texts may aid in readability,
there is no guarantee that a short piece of text will be inherently
more readable than a long one which we discuss in the following
section.

For both the Alpaca and Dolly datasets, there is a consistent trend
that all readability measures are skewed towards higher educational
levels. This suggests that training on these datasets will likely yield
a model that is capable of generating text at a college level. We
acknowledge that just because a model could generate such text
does not mean that it will. But given how well generative models
have done on a variety of college-level tasks (e.g., bar exams [60, 74],
GRE and SAT [81], MCAT [19]), the skew is not unexpected. The
surprising aspect of this is that the instructionswithin these datasets
do not explicitly specify any grade level for the response (e.g.,
“explain like I’m 5...”). Instead, the system is permitted to derive an
appropriate response based on the different “ideal” responses to
potentially similar types of instructions (e.g., “explain this”, “tell me
a story”). While this freedom allows the model to tailor a response
according to its internal statistical model and any internal measures

U.S. Grade Level
Method ≤ 6 7 − 9 10 − 12 > 12

Flesch-Kincaid 1097 547 211 283
Coleman-Liau 1171 554 269 144
Dale-Chall 226 800 392 720

Table 3: Readability scores by U.S. grade-level bucket for the
self-instruct instruction dataset[113] for the 2,138 instances
out of 82,612 that were long enough to be scored with an
average length of 165.7 words.

of “goodness” (e.g., creativity, accuracy), the same freedom means
that a model may not naturally respond in an accessible manner
(e.g., generating a college-level answer to a fifth-grader’s question).

For Dolly and Alpaca, the Dale-Chall metric reports higher grade-
level responses than the other two measures, especially at the
college level. While some of this is invariably influenced by the
presence of technical or scientific words in the instructions (e.g.,
“Describe the process of osmosis” in Alpaca, “What is radioactive de-
cay?” in Dolly), we argue that responses to such prompts should not
consistently be of college-level complexity. However, their preva-
lence in the training data might predispose the model towards such
outputs. Essentially, while the Dale-Chall metric might overesti-
mate response difficulty due to its emphasis on words familiar to
fourth-graders, it underscores the potential accessibility bias aris-
ing from the frequent use of challenging terms. This raises the
possibility that models could benefit from datasets incorporating
multiple "ideal" responses, each varying in complexity but retaining
accuracy and other desired attributes.

The self-instruct dataset stands out due to its limited number of
scorable responses and its skew towards lower grade levels com-
pared to Alpaca and Dolly. This could be attributed to the utilization
of GPT-3 (davinci), which is arguably "simpler" and less extensively
trained than text-davinci-003. Additionally, it might not possess the
same level of knowledge as an average Databricks employee. How-
ever, the Dale-Chall metric still categorizes the dataset as having
an excessive use of “difficult” words in its responses, leading to a
bias toward higher grade levels. Yet, this bias is less pronounced
in the self-instruct dataset than in Alpaca and Dolly, especially
when comparing the proportions within the ≤ 6 and > 12 grade
level brackets. This provides further evidence that the “davinci”
model may have tended to produce somewhat easier-to-understand
responses which could easily be overlooked by a preference for
newer, more advanced models.

3.3 “Short” Responses
Despite py-readability-metrics requiring 100 words to produce a re-
liable score, it is important to note that these shorter responses are
still important. Therefore, the base components from the readabil-
ity metrics in Section 2.1 are used to conduct a high-level analysis.
From Table 4, it can be seen that a substantial segment of responses,
irrespective of the dataset, consistently includes a sizable propor-
tion of words not found in the Dale-Chall word list. Given that
these responses typically range between 17-33 words, it is plausible
to assume they may pose comprehension challenges for individuals
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with stopwords
Dataset Word Count Complex Words Characters Syllables
alpaca 33.94 (28.87) 0.39 (0.25) 4.95 (1.90) 1.66 (0.56)
Dolly 31.63 (26.12) 0.42 (0.24) 5.01 (1.06) 1.66 (0.41)

self-instruct 17.70 (21.40) 0.55 (0.32) 6.21 (2.70) 1.80 (0.59)
without stopwords

U.S. Grade Level
Dataset Word Count Complex Words Characters Syllables
Alpaca 20.62 (17.24) 0.56 (0.26) 6.17 (2.05) 2.00 (0.64)
Dolly 19.76 (15.27) 0.59 (0.24) 6.08 (1.19) 1.95 (0.48)

self-instruct 10.77 (12.17) 0.64 (0.29) 7.24 (2.74) 2.02 (0.60)
Table 4: For the responses that were too short to be reliably
scored, we report the average and standard deviation of the
following four measures across the desired outputs with and
without stopwords: average word count, average fraction of
Dale-Chall complex words, average character count per word,
average syllable count per word.

with literacy or cognitive challenges. Interestingly, words, on aver-
age, neither exhibit extensive length across datasets nor seem to
contain many syllables. This suggests that the terminology, possibly
unfamiliar to some readers, may also be relatively short or poten-
tially specialized (e.g., code, domain-specific vernacular). However,
when adjusting for stopwords (i.e., typically short words that could
skew character and syllable count) by excluding them from our
assessment, all average values (except for word count) noticeably
increase. Accordingly, relying on the same signals as readability
metrics when considering shorter model responses may underesti-
mate reading difficulty due to the presence of stopwords and we
remind system builders to be mindful of Mark Twain’s sage advice
to “[not] use a five dollar word when a fifty cent one will do” since
short words do not guarantee comprehension.

4 GENERATIVE MODELS
In the previous section, we observed that when fine-tuned with
instruction datasets, generative models have the potential to learn
to produce college-level text, which might be challenging for those
with lower literacy levels or cognitive impairment. The question
remains, however, as to whether generative models exhibit these
traits. Therefore, to provide an answer, this section turns towards
five modern state-of-the-art models described below. Using the
52,002 Alpaca instructions without any added context (i.e., no en-
gineered prompts), we aim to determine if these models generate
text at a college-level proficiency.

4.1 Models
For this analysis, we have identified five models representative
of the current state-of-the-art and anticipated for deployment in
practical generative information systems.We focus on the following
models that are primarily used for text generation11:

• GPT-3.5-Turbo [83]: Given that this model is the successor
to the models used to generate the self-instruct and Alpaca
datasets and considering its role in popularizing ChatGPT,

11Specializedmodels, like those for code completion, will likely generate text differently
but that is out of the scope of the current work

we deemed it a suitable baseline due to its exposure to the
general public. We used the August 2023 version (“gpt-3.5-
turbo”) using the default settings provided in the OpenAI
API, such as a temperature of 1 and no token length limit.

• GPT-4 [81]: GPT-4 is the subsequent successor to the above
LLM and is OpenAI’s general-purpose LLM that powers
ChatGPT Plus and provides a basis for Bing Chat 12. As
this is arguably OpenAI’s most powerful model,we included
it to observe any changes in response generation over the
“last” generation. We used the September 2023 version of the
model (“gpt-4”) via the OpenAI API with all default settings,
such as a temperature of 1 and no token length constraints.

• PaLM2 [6]: Google’s generative model that helps to power
the Bard retrieval augmented generation product 13. Al-
though it may not have attained the same level of pop-
ularity as OpenAI’s models, due to its potential integra-
tion into prominent Google products we included it in our
tests. We used the August 2023 version of the model (“chat-
bison@0001”) with all default settings via the Vertex API.

• Llama2-7B [109]: This is the open-source, commercially vi-
able successor to Meta’s Llama model [108]. We opted to
assess this model given its potential as a robust open-source
option suitable for production deployment. Llama2-7B con-
trasts with the larger models previously mentioned, possi-
bly offering unique insights due to its more compact size.
The version assessed was sourced from the HuggingFace in
September 2023 (“meta-llama/Llama-2-7b-chat-hf”) via their
Inference Endpoints with an A10G instance.

• Falcon-7B [5]: Provided by the Technology Innovation Insti-
tute (TII), this model represents one of the first commercially
viable and competitive alternatives to models produced by
US-based corporations. As TII is not U.S.-based, we believe
this may also affect the generation style due to potential or-
ganizational structure and culture differences (e.g., English is
not necessarily a first language). We use the smaller version
of the model to investigate how model size affects the results.
We used the version of Falcon-7B available in September
2023 on HuggingFace (“tiiuae/falcon-7b-instruct”) via their
Inference Endpoints with an A10G instance.

U.S. Grade Level
Method ≤ 6 7 − 9 10 − 12 > 12

Flesch-Kincaid 1450 4037 8476 10,676
Coleman-Liau 1217 2459 5506 15,457
Dale-Chall 10 1263 2665 20,701

Table 5: Readability scores by U.S. grade-level bucket for the
Alpaca dataset [104] with outputs regenerated by GPT-3.5-
Turbo[83] for the 24,639 instances out of 52,002 that were
long enough to be scoredwith an average length of 341words.

4.2 Results
4.2.1 GPT-3.5-Turbo. Prior experiences with GPT-3.5-Turbo led us
to expect a certain degree of verbosity, the data presented in Table
12https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-
powered-microsoft-bing-and-edge-your-copilot-for-the-web/
13https://ai.google/discover/palm2/
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U.S. Grade Level
Method ≤ 6 7 − 9 10 − 12 > 12

Flesch-Kincaid 2229 5339 7866 4936
Coleman-Liau 1668 3039 6496 9167
Dale-Chall 16 1505 2929 15,920

Table 6: Readability scores by U.S. grade-level bucket for the
Alpaca dataset [104] with outputs regenerated by GPT-4[81]
for the 20,370 instances out of 52,002 that were long enough
to be scored with an average length of 303.7 tokens.

5 indicates the model is more verbose than anticipated. With nearly
half of the dataset can be scored and the majority aligning with
higher grade levels, this highlights a need for guardrails tailored to
a model’s use (e.g., a prompt to produce easier to read responses).
This tendency towards lengthier outputs, averaging 341 words,
is interesting given that many of the responses for the training
datasets were shorter. It is important to note that extended text
poses challenges for those with limited literacy [92, 97] but also for
those with impairments, such as dyslexia [20, 103].

That being said, the disparity between Dale-Chall and the other
two metrics in the > 12 bucket also indicates that the vocabulary
employed might be more technical or challenging, posing com-
prehension issues for those with linguistic challenges. Given both
the verbosity and complexity of the words, it is advisable that this
model should be carefully incorporated into information systems.
It may be the case that injecting additional instructions to adapt
responses for users with lower literacy levels is necessary.

4.2.2 GPT-4. As seen in Table 6, GPT-4 generates a higher number
of lengthy responses compared to the fine-tuning data but these
are less frequent and shorter than those from GPT-3.5-Turbo. Inter-
estingly, there is a marked shift toward outputs aligned with fewer
years of education in GPT-4, in comparison to GPT-3.5-Turbo with
a much smaller ratio between the ≤ 6 years and > 12 years buckets
for Flesch-Kincaid and Coleman-Liau metrics. However, GPT-4’s
performance on the Dale-Chall measure remains relatively consis-
tent with its predecessor model, showing only a decrease in the
number of scoreable responses. While some progress is noticeable
concerning response and word length, there is a persistent inclina-
tion to use more “difficult” vocabulary. This bias could stem from
the specialized nature of Alpaca instructions, which may often be
technical or science-centric. This improvement comes at a substan-
tial cost as GPT-4 took several days longer than GPT-3.5-Turbo and
was approximately 25x more expensive ($̃20 for GPT-3.5-Turbo to
$̃500 for GPT-4 in response generation).With that in mind, it may be
more effective and efficient to attempt to improve GPT-3.5-Turbo’s
responses rather than GPT-4’s responses.

4.2.3 PaLM2. In contrast to the GPT models, PaLM2 exhibits at-
tributes more closely aligned with our observations from the fine-
tuning data, as evidenced by Table 7. Approximately 7% of the
responses generated by PaLM2 were scoreable. Moreover, in com-
parison with the Alpaca and Dolly datasets, PaLM2 demonstrates
a notable skew towards responses indicative of fewer years of ed-
ucation. Interestingly, even the Dale-Chall metric for noticeably
less when compared to the fine-tuning data, despite this metric’s
predisposition to register higher grade levels when confronted with

U.S. Grade Level
Method ≤ 6 7 − 9 10 − 12 > 12

Flesch-Kincaid 1113 1093 1005 577
Coleman-Liau 915 1139 1056 678
Dale-Chall 573 1085 749 1381

Table 7: Readability scores by U.S. grade-level bucket for the
Alpaca dataset [104] with outputs regenerated by PaLM2[6]
for the 3,788 instances out of 52,002 that were long enough
to be scored with an average length of 120.2 words.

U.S. Grade Level
Method ≤ 6 7 − 9 10 − 12 > 12

Flesch-Kincaid 1089 1390 1203 1869
Coleman-Liau 1105 1195 1301 1950
Dale-Chall 114 909 643 3885

Table 8: Readability scores by U.S. grade-level bucket for the
Alpaca dataset [104] with outputs regenerated by Falcon-
7B [5] for the 5551 instances out of 52,002 that were long
enough to be scored with an average length of 473.2 words.

technical terms. For context, the self-instruct data presented ap-
proximately 3̃ times more instances in the > 12 bucket than in the
≤ 6 bucket according to the Dale-Chall metric. In contrast, PaLM2
displays a ratio of only about 2̃.4 times more instances. While we
cannot make any claims as to whether this behavior is intentional,
due to PaLM2’s closed nature, it is promising that the readability
of responses may have been factored into the training of PaLM2 at
some point14. Our interpretation of these findings, coupled with
subsequent sections, suggests that PaLM2 might serve as a reason-
able base model for incorporation into a generative information
system without requiring as much consideration around prompt
engineering or hyperparameters compared to other models.

4.2.4 Falcon-7B. Table 8 shows that Falcon-7Bmanages to produce
a fairly balanced distribution for both Flesch-Kincaid and Coleman-
Liau despite having an average length exceeding that of either GPT
model15. The largest bucket remains the > 12 category, which is
anticipated. On the other hand, the model’s relative performance
between the ≤ 6 and > 12 buckets is commendable. This implies
that response length is not the sole determinant of reading difficulty,
which mirrors our observations in Section 3.3. Despite Falcon-7B’s
smaller size compared to commercial models, its performance sur-
passes expectations, hinting that a more compact model might be
preferable for optimizing accessibility. Further studies involving
larger Falcon versions are necessary to determine and validate such
a claim but that study is beyond the scope of this work.

4.2.5 Llama2-7B. Table 9 repeats the trend of GPT-3.5-Turbo and
GPT-4 characterized by numerous long responses with a trend to-
wards more years of education16. However, the ratio between lower

14As Bard does contain a “Simplify” button, we suspect that some thought may have
been given to this topic but caution that a single button may not be a panacea.
15Upon reviewing the responses, we observed that the model sometimes repetitively
generates the same set of words multiple times, which likely contributes to the overall
length of the output.
16It is worth mentioning that, akin to Falcon-7B, repetition might also be influencing
the length component of these results, potentially due to model size.
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U.S. Grade Level
Method ≤ 6 7 − 9 10 − 12 > 12

Flesch-Kincaid 3385 6968 9222 10,771
Coleman-Liau 5842 5991 7798 10,715
Dale-Chall 286 3373 3975 22,712

Table 9: Readability scores by U.S. grade-level bucket for the
Alpaca dataset [104] with outputs regenerated by Llama2-
7B [109] for the 30,346 instances out of 52,002 that were long
enough to be scored with an average length of 465.4 words.

GPT-3.5-Turbo
U.S. Grade Level

Method ≤ 6 7 − 9 10 − 12 > 12
Flesch-Kincaid [1478, 1432] [4067, 4166] [8336, 8322] [10,714, 10,722]
Coleman-Liau [1236, 1223] [2474, 2449] [5519, 5547] [15,434, 15,432]
Dale-Chall [13, 9] [1296, 1304] [2636, 2700] [20,708, 20,629]

PaLM2
U.S. Grade Level

Method ≤ 6 7 − 9 10 − 12 > 12
Flesch-Kincaid [1112, 1125] [1085, 1031] [1000, 1021] [566, 580]
Coleman-Liau [918, 914] [692, 1118] [1093, 1006] [692, 719]
Dale-Chall [553, 448] [1101, 1122] [726, 723] [1383, 1364]

Table 10: Readability scores by U.S. grade-level bucket for the
Alpaca dataset [104] with outputs regenerated twice by GPT-
3.5-Turbo[83] (24,663 and 24,642 instances) and by PaLM2 [6]
(3763 and 3757 instances) that were long enough to be scored.

and higher education levels seems to be less skewed for Llama2-7B
compared to either OpenAI model. The Llama2-7B and Falcon-7B
results reinforce that the content of responses is just as crucial for
readability as their length. Relying solely on length restrictions
may not be sufficient to ensure comprehensible responses.

The findings of this section provide additional evidence sug-
gesting that most ready-made generative models tend to gener-
ate responses akin to responses that a college-educated individual
might have plausibly produced. This reinforces the argument that
these models may not be universally suitable for broad applications
without careful consideration regarding their intended audiences
and user experience design. Based upon these findings, we discuss
additional considerations in Section 7.

4.3 Readability Consistency for LLM Responses
Since we have not constrained response generation, we wish to de-
termine if the initial results were a simple non-deterministic fluke.
To test this, we regenerated the Alpaca responses twice more using
GPT-3.5-Turbo and PaLM2, as they are both the most time and
cost-effective models in previous experiments, using exactly the
same configurations as the initial experiments (i.e., to test variabil-
ity in response generation). The outcomes, presented in Table 10,
reveal a remarkable consistency in the models’ behavior. Although
the specific scored responses and their associated grade-level cate-
gories varied, the overarching trends remained stable. This consis-
tency, achieved without additional constraints, suggests that such
response generation tendencies are intrinsic to the models rather
than a single, atypical execution.

Using the PaLM2 results, we conducted further analysis of in-
structions with scored prompts and found 1,313 instructions are

Shared by Three Shared by Two Unique Too Short
Write (436) Write (227) Describe (526) Generate (3899)

Generate (280) Generate (160) Explain (523) Create (3213)
Create (152) Explain (141) Generate (348) Describe (2431)
Compose (60) Create (128) Create (302) Given (2101)
Explain (32) Describe (84) What (279) What (1948)
Compare (26) Compare (65) Write (256) Write (1839)
Summarize (25) Summarize (53) List (160) Name (1786)

Tell (25) What (41) Name (159) Identify (1373)
Given (23) Analyze (32) Compare (154) Find (1363)
Come (22) Compose (31) How (132) Explain (1321)

Table 11: Top 10 most common “instruction words” (i.e., the
first word in the instruction) for three regenerations of the
Alpaca dataset by PaLM2. Columns indicate the number of
iterations that produced a readability scoreable response
for identical prompts. A separate column displays prevalent
instructionwords from all responses that could not be scored.

shared by all three runs, 1,400 are shared by two runs, and 4,569 are
unique to one of the runs. The distribution of task words in these in-
structions is depicted in Table 1, which also highlights instructions
that consistently yielded short responses across runs. Interestingly,
the nature of the generative task does not significantly influence
the category of response generated. When multiple models produce
responses to the same instruction, approximately half the instances
show variations in the evaluated grade level of one model’s re-
sponse compared to another, irrespective of the readability metric
applied. This suggests that specific details of the task may have a
more pronounced influence on readability than the task itself (e.g.,
tell a horror story versus a comedy story). Such observations under-
score the idea that relying solely on the model’s inherent behavior
to consistently produce readable responses might be insufficient
and proactive measures to ensure readability are essential (e.g., uti-
lizing an inferred user reading level or user-selected reading level
to modify the model prompt).

5 REINFORCEMENT LEARNING FROM
HUMAN FEEDBACK (RLHF)

OpenAI underscored the role of reinforcement learning from human
feedback (RLHF) when introducing ChatGPT [80]. This training
process fine-tunes model responses using reinforcement learning
techniques, such as Proximal Policy Optimization [96], informed by
human feedback mechanisms like ranked lists, numeric scores, or
simple approval indicators like thumbs up/down17[23, 83, 101]. This
process seeks to align model generation with human preference
while also attempting to mitigate the introduction of undesired
biases [21, 36, 41, 42, 48, 57, 71, 83, 118, 119]. While several RLHF
datasets exist [9, 39, 46, 72, 78], there is can be a noticeable lack of
comprehensiveness in their documentation, it it exists at all. For in-
stance, a review of the repository at https://github.com/opendilab/
awesome-RLHF#dataset (accessed Oct. 9, 2023) reveals that only
a few, such as those cited above, provide comprehensive insights
into their RLHF dataset creation. Furthermore, of the 124 “rlhf”
entries on HuggingFace Dataset Hub, the majority seem to be adap-
tations of datasets from Anthropic [9, 46]. The press release for
ChatGPT [80] provides a general summary of the process used but

17As seen in the ChatGPT interface.
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no explicit details nor do subsequent publications reveal them [81].
This contrasts with OpenAI’s earlier RLHF publications, which
presented more detailed descriptions [78, 101].

The reluctance to provide comprehensive information about
dataset creation is concerning, particularly given the rising de-
mands for transparency in AI research [7, 13, 50, 76, 87, 93]. The
absence of details is especially problematic for models that have
gained widespread use, as the biases in these models may not be
immediately clear to users. For example, a closer look at the sup-
plementary material from Stiennon et al.[101], on the use of RLHF
to enhance summarization, reveals that out of the 21 assessors
who participated in their survey, 18 had achieved at least an un-
dergraduate degree, and all had completed high school. Given this
context, it is evident that these assessors likely possess high literacy
levels, with preferences shaped by their education. To better un-
derstand and highlight potential biases arising from such assessors,
extending Bender and Friedman’s assessor attributes [13] would be
beneficial to include more nuanced details. Such extensions could
incorporate literacy or reading comprehension metrics, in addition
to the existing native language and linguistic training attributes.

The attributes of assessors can substantially influence the evalu-
ation process, especially in terms of how they interpret and act on
given instructions. To illustrate, in the Stiennon et al. [101] study,
assessors were tasked with evaluating a summary based on its Co-
herence. The guideline provided defined a coherent summary as
one that is "A summary is coherent if, when read by itself, it is easy
to understand and free of English errors. A summary is not coherent
if it is difficult to understand what the summary is trying to say. Gen-
erally, it is more important that the summary is understandable than
it being free of grammar errors". This directive raises an intriguing
point in relation to Bender et al.’s perspective [14], which postulates
that coherence, within the realm of human interactions, is deeply
rooted in the intent behind communication. Generative models, by
their very nature, do not inherently possess this communicative
intent. Thus, when assessors are guided to gauge the coherence
of a computer-generated summary without an explicitly defined
intent or target audience, they are inadvertently left to infer this
intent themselves. We argue that, under such circumstances, asses-
sors are inclined to adopt a stance that resonates with their own
perspectives and experiences. Consequently, this introduces biases
aligned with their personal attributes. In the context of this paper,
such bias may manifest with a preference for summaries that those
who possess a high degree of literacy find understandable.

In our analysis of the study conducted by Steinnon et al. [101],
it is evident that even well-executed research can inadvertently
allow unintended biases to manifest, despite the study’s overall
merits. Building upon the “model usage context” concept intro-
duced by Gong et al. [50] for model deployment, we advocate for
clearly specifying both the intended application of the model and
its target demographic when formulating instructions for assessors
in RLHF and related tasks. By incorporating this information, as-
sessors can tailor their evaluations to more closely align with the
model’s intended user base, eliminating the ambiguity of decipher-
ing an overarching intent. Nonetheless, it is imperative to approach
this with caution to prevent the introduction or reinforcement of
biases, especially those that may arise from overtly specifying at-
tributes like literacy or intelligence. Integrating these enhanced

instructions with the annotator attributes recommended by Ben-
der and Friedman [13], and gathering other relevant metrics—such
as literacy levels—in an ethical manner, can offer a richer under-
standing of system performance. This comprehensive approach
can potentially lead to recommendations for enhancing both the
accessibility and efficacy of the system.

6 BEYOND “STANDARD” ENGLISH
Our analysis predominantly centred on what might be referred to as
“standard” English, the form taught in academic settings, due to its
ease of readability scoring and interpretation. However, many other
English variants have evolved around the world. These include pid-
gins, such as Nigerian pidgin, creoles, like Jamaican patois,dialects,
for instance, Cajun English, and other linguistic categorizations
that deviate from “standard” English, such as African American
(Vernacular) English. For many, these linguistic forms are deeply
embedded in their cultural identity.

These linguistic variations represent a diverse range of expres-
sions, enhancing content relatability and comprehension for their
speakers. They challenge the dominance of standard English in
readability, offering greater cognitive and cultural accessibility. En-
suring these variants are appropriately integrated into generative
systems could substantially improve access to information. These
languages have dedicated resources, such as Wikipedia pages for
Jamaican Patois18 and Nigerian Pidgin, and are featured in media
outlets like the BBC.19 In research contexts, these languages pro-
vide accessible data sources, reflecting similar experiences to that of
low literacy users. For speakers of these variants, native linguistic
presentation enhances readability. In IR, systems capable of process-
ing these variants could greatly improve information accessibility
and relevance for diverse users. The response of a Nigerian pidgin
speaker to a generative system responding in college-level English
may be similar to the experience of an eighth-grade level reader,
highlighting the importance of considering various linguistic back-
grounds when building IR systems. This is crucial for IR systems,
as ensuring they meet diverse linguistic needs can enhance user
accessibility and experience. The adaptability of generative systems
to different linguistic contexts is essential, aligning with concepts of
“communicative intent” [14] discussed earlier. By accommodating
these variants, generative models can better reflect diverse user
groups, improving both accessibility and readability.

Despite the unpredictability of generative models, utilizing lan-
guage variants like Jamaican Patois could provide valuable insights
into improving their accessibility. To test this, we applied five gen-
erative models to 31 instructions translated into Jamaican Patois,
aiming to improve user experience and develop broader accessibility
solutions.20 The queries should be viewed merely as a convenience
sample, enabling a rapid preliminary assessment of model behavior.
This exploratory test highlighted challenges in processing brief,
non-standard English inputs, providing crucial insights for creating
linguistically adaptable and effective IR systems.

Responses from models like PaLM2, Llama2-7B, and Falcon-7B
were generally unremarkable, except Falcon-7B’s failure to respond
18jam.wikipedia.org
19https://www.bbc.com/pidgin
20The switch to Dolly was necessitated by a need for more “natural” queries rather
than the task-driven nature of Alpaca.
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to 20 instructions and LLama2-7B’s incoherent Patois replies. GPT-
3.5-Turbo and GPT-4, however, coherently responded in Patois, with
GPT-4 showing more consistency. This highlights the difficulty in
tailoring IR system responses to diverse cultural and linguistic
contexts without stereotypes or biases. The complexity lies in ap-
propriately adapting responses, such as avoiding overly simplistic
answers for an eighth-grade-level query, which could be seen as pa-
tronizing. The results reveal the importance of balancing readability
with cultural sensitivity in IR systems and demonstrate challenges
that models face with brief, non-standard English inputs, indicating
potential user experience and accessibility issues.

7 LOOKING FORWARD
For the IR community, understanding and addressing the challenges
posed by increasingly prevalent user-visible generative technolo-
gies is essential. This work contributes novel insights into these
challenges, which are becoming more apparent to end-users as
information systems evolve. The complexity of these challenges
is significant, extending beyond the primary expertise of many in
the IR community. Historically, addressing issues of fairness, help-
fulness, and harmlessness in information systems may not have
been a central focus. In the current landscape of IR, it is crucial to
consider these aspects, emphasizing the importance of our work
in this context. Collaborative efforts with experts from diverse dis-
ciplines have been crucial in both enhancing and developing IR
systems. Extending these collaborations with experts in literacy
and cognitive impairments are essential to create IR systems that
are technologically advanced, equitable, and accessible.

While previous research has explored the intersection of search
and impairments such as dyslexia (see Section 2.3), as well as
methodologies for conducting user studies in these contexts [16],
there seems to be a gap in the literature concerning literacy and its
relationship with generative information systems. This gap high-
lights the importance of examining if current models of user be-
havior remain relevant when catering to users with low literacy
and other impairments, similar to Berget et al.’s study in the con-
text of dyslexia [18]. Furthermore, analyzing the proficiency of
low-literacy users in navigating generative information systems for
information tasks could offer valuable insights. These insights can
guide enhancements in both the user interface and the system’s
internal architecture to optimize search outcomes.

Examining generative systems is essential for balancing accessi-
bility and privacy. This involves minimizing the amount of context
needed to be provided in a query, and ensuring that such support
does not diminish those who use it (e.g., negatively impacting their
self-esteem). Google’s Bard already offers a “simplify” button, tar-
geting reading levels between fourth and sixth grades for simplified
outputs, while regular responses aim for seventh to twelfth grades,
aligning with our PaLM2 findings. Simplification methods can vary,
and in general, they should be tailored based on the needs of the
particular user. For example, adjustments for general reading levels
might not be the same as those tailored for users with dyslexia.
Issues around “prompt tailoring” for readability and accessibility
are complex and beyond this work. We avoided testing simple modi-
fications (e.g., “Respond as if I can only read at ... level.”) as we could
not imagine someone, with a readability issue or other impairment,

manually performing or selecting such modifications to their query
without this option being carefully presented to them.

A counterargument to enhancing visual interfaces in genera-
tive information systems is to simply provide a voice assistant for
users but this solution has its own limitations. Individuals with
low literacy might still face challenges comprehending a spoken
response if it uses vocabulary beyond their understanding. Fur-
thermore, “listenability” gauges the ease of understanding spoken
words, analogous to the readability metrics discussed in this pa-
per [35, 53]. The concept of listenability within information science
and retrieval appears to be relatively uncharted in our estimation,
further research could offer more avenues for users to satisfy their
information needs and potentially enhance accessibility in textual
formats as a by-product.

Regardless of how future generative information systems de-
liver responses, it is essential to recognize and address the inherent
biases when using humans or generative models as representa-
tives during a system’s design and feedback stages [40, 66, 106].
For example, when examining techniques for long-form question-
answering, Nakano et al. selected contractors with the following
in mind, “[d]ue to the challenging nature of the tasks, contractors
were generally highly educated, usually with an undergraduate
degree or higher,” which indicates that such tasks may be beyond
Level 2 in the PIAAC framework (Figure 1). Thus, when relying on
highly educated individuals or models that replicate such expertise
for intricate tasks, we need to be particularly careful in the design
of feedback mechanisms, ensuring they do not skew results toward
those “capable” of providing feedback in the desired manner.

Improving accessibility of generative information systems has
both social and economic benefits. A recent Gallup study [94] ar-
gued that improving U.S. literacy levels could increase annual in-
come by approximately $2.2 trillion, underscoring a large market
for accessible systems. Such systems can boost productivity and
income for low-literacy users in work environments, yielding com-
mercial benefits for businesses focusing on accessibility. While not
solving all societal literacy issues, this approach highlights the dual
advantage of improved accessibility: better user experiences and
competitive commercial gains. This makes addressing accessibility
into a win-win scenario.

8 CONCLUSION
Our work addresses critical concerns about integrating generative
models into IR systems, particularly highlighting potential acces-
sibility issues for users with low literacy or reading impairments.
Being aware of and understanding this gap in accessibility allows IR
practitioners to more conscientiously design and develop systems
to ensure that information access is not limited to a select group.
We showed that the training data for generative models often leads
to outputs akin to college-level writing, as demonstrated by our
analysis of responses from five popular models using the Alpaca
dataset. This tendency of models to mirror proficient humanwriting
styles underscores the need for more inclusive training approaches
in IR. We also discuss potential strategies to enhance accessibility
in information systems and the challenges inherent in such efforts,
underscoring the importance of this work in advancing equitable
and user-friendly systems.
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