
A Search for Prompts: Generating Structured
Answers from Contracts

Adam Roegiest, Radha Chitta, Jonathan Donnelly, Maya Lash, Alexandra
Vtyurina, and François Longtin

Zuva Inc., Toronto, Ontario, Canada
{adam,radha.chitta,jonny.donnelly,maya,sasha, francois}@zuva.ai

Abstract. In many legal processes being able to action on the concrete
implication of a legal question can be valuable to automating human
review or signalling certain conditions (e.g., alerts around automatic re-
newal). To support such tasks, we present a form of legal question answer-
ing that seeks to return one (or more) fixed answers for a question about
a contract clause. After showing that unstructured generative question
answering can have questionable outcomes for such a task, we discuss
our exploration methodology for legal question answering prompts using
OpenAI’s GPT-3.5-Turbo and provide a summary of insights.
Using insights gleaned from our qualitative experiences, we compare our
proposed template prompts against a common semantic matching ap-
proach and find that our prompt templates are far more accurate despite
being less reliable in the exact response return. With some additional
tweaks to prompts and the use of in-context learning, we are able to fur-
ther improve the performance of our proposed strategy while maximizing
the reliability of responses as best we can.

Keywords: Structured answers · Legal Question Answering· Generative
AI · Prompt Engineering.

1 Introduction

Understanding obligations and restrictions in contracts is as useful to lawyers as
it is to lay-people1 and goes beyond just finding relevant information in a contract
to understanding the underlying implications (e.g., whether a tenant can sublet
an apartment). On the basis of a single contract, this is not too tedious to perform
manually when relevant clauses are extracted for the reader but quickly becomes
onerous and time-consuming at scale or when legal expertise is not a strong
suit. This understanding of not just the clauses but the implications present in
contracts can allow individuals and organizations to make smarter decisions and
have more confidence when doing so. This is especially paramount when certain
implications can have potentially very negative effects (e.g., unlimited liability

1 Especially for lay-people, it is probably more useful as a means to avoid the costs of
dealing with a lawyer.

ar
X

iv
:2

31
0.

10
14

1v
1 

 [
cs

.C
V

] 
 1

6 
O

ct
 2

02
3



2 Roegiest et. al.

guarantees, lowest price guarantees) depending on which side of the implication
one is on.

With the increasing popularity of Generative AI and applications to “chat”
with one’s documents (e.g., ChatPDF2, docGPT3, PDFGPT.IO4, CaseText5),
there is the potential to more easily facilitate this understanding of legal obliga-
tions and restrictions at scale. Inspired by this, we sought to investigate how we
might leverage Generative AI, specifically OpenAI’s GPT-3.5-Turbo, to help us
generate structured answers to questions about clauses in legal documents. Tak-
ing inspiration from closed question-answering [10] and textual entailment [33],
our task is such that we are provided a set of contextual clauses about which a
user would like to ask questions with predefined outputs (e.g., multiple choice)
rather than a free-form answer. Such outputs can facilitate the creation of busi-
ness workflows that can easily take action on the results of the questions with-
out resorting to complex understanding of a generated answer or manual human
review. While such outputs are perhaps less compelling than having a “con-
versation” with a document, we believe that this approach scales better to a
document collection and workflow automation. Moreover, we show that more
natural prompts can very easily exhibit consistency and reliability issues when
examining the responses generated in a “chat” interaction paradigm (Section 3).

While prompt engineering is a new area of research [16,22,36,30] and book
publication6, it is a task that neither we nor the users of our product actually
desire to do. Our end goal then is to find and use prompts that provide consistent
answers for the same clause and reliable answers across clauses. In particular, we
are interested in finding reusable templates that allow end users to “fill in answer
options” and not worry about overall prompt engineering. This allows end users
to customize and modify options to their needs but it also results in system
builders not needing to foresee all possible information needs and build bespoke
prompts for each of them. To find such templates, four team members tested
over 700 prompt and clause combinations to discover critical aspects of prompts
and prompt templates that we detail in Section 4. Using the insights gleaned, we
tested our prompt templates in a more rigorous evaluation in Section 5, where
we compare our approach to more traditional semantic matching techniques and
find that our prompts can outperform such techniques. We conclude with a
discussion of limitations and future work.

2 https://www.chatpdf.com/
3 https://github.com/cesarhuret/docGPT
4 https://pdfgpt.io/
5 https://casetext.com/
6 With over 500 English language books dedicated to the topic on Amazon as of April

29, 2022.

https://www.chatpdf.com/
https://github.com/cesarhuret/docGPT
https://pdfgpt.io/
https://casetext.com/


A Search for Prompts: Generating Structured Answers from Contracts 3

2 Background

Generative models such as LaMDA 7, LLaMA 8, and GPT-n series 9 are self-
supervised models which learn to predict the next token in a sequence of to-
kens [21,26]. These large language models have billions to trillions of parameters
and are pre-trained on massive corpora of texts. Unlike the early pre-trained lan-
guage models, they require little to no fine-tuning and perform well in zero-shot
and few-shot settings.

In a zero-shot generation task, the model is provided with the inputs and an
instruction in natural language, and the response of the model can be parsed
to obtain the answer. For open-domain QA the only input is the question but
for closed-domain the input also includes the context. In a few-shot setting,
the model is also provided with a few examples, which have the indirect ef-
fect of “fine-tuning” the model [4]. Recent large language models (e.g.GPT-
3.5-Turbo, Vicuna-13B, Alpaca) have been fine-tuned, either using supervised
or reinforcement learning, with prompts for a diverse set of natural language
tasks [24,20,29,25,6]. They have generally outperformed earlier language models
on most natural language generation benchmarks including question answering,
summarization, and translation [35]. Instruction-tuned models achieve better
performance than fine-tuned models but can suffer from two major issues [15]:
– Inconsistency: Results generated have been found to be overly reliant on the

phrasing of the prompt (e.g., small prompt changes producing inexplicable
differences in generated responses, multiple runs yielding different results)

– Hallucination: Models were found to generate false/irrelevant information in
some instances, which introduces risk when accuracy is important.

Prompt engineering techniques [12,16,30] aim to design prompts that mitigate
these issues. For instance, in [12] a smaller language model, such as T5, is tuned
to "auto-complete" the prompts for the large language model. Prompt templates
are created in [16] and [30] which can be auto-filled. While these methods have
had some success, this research is still ongoing. In our work, we use an OpenAI
provided large language model, GPT-3.5-Turbo, and determine if it is possible
to create prompt templates that can be used to consistently answer questions
based on contract clauses.

3 Open-Ended Response Generation

In many legal processes, lawyers look to take an action on a particular answer
option rather than a summary or the raw text of a clause itself. For example,
while dealing with environmental indemnification, a lawyer (representing a land-
lord) may wish to know in what contracts the tenants indemnify the landlord
rather than any explicit conditions around the indemnification (which may be

7 https://blog.google/technology/ai/lamda/
8 https://ai.facebook.com/blog/large-language-model-llama-meta-ai/
9 https://platform.openai.com/docs/models



4 Roegiest et. al.

relevant later). By identifying which contracts do not have such a clause, the
lawyer may have particular advice for the landlord. When only indemnification
clauses are presented, however, the lawyer would be required to read them to an-
swer these questions (e.g., direction of indemnification). An ideal system would
produce a concise and consistent answer when asked “who indemnifies whom?”
with respect to the clause.

Fig. 1: An example of an environmental indemnity clause with mutual indemnification.

Figure 1 is an example indemnity clause from an arbitrary lease from our
collection of legal documents. As an example, if one prompts OpenAI’s GPT-
3.5-Turbo model (with temperature set to 0) with the following: In the clause
below, who indemnifies whom? and then append the example clause, we get the
following responses after regenerating a handful of times (with varying repeti-
tions):

– The Lessor indemnifies the Lessee Indemnified Parties, and the Lessee indemnifies the Lessor
Indemnified Parties.

– Lessor indemnifies Lessee Indemnified Parties for any and all Environmental Liabilities, except
those caused by the grossly negligent or wilful misconduct of Lessee, Manager, or subtenants of
Lessee or Manager, and their respective employees, agents or independent contractors. Lessee
indemnifies Lessor Indemnified Parties for Environmental Liabilities caused by the grossly neg-
ligent or wilful misconduct of Lessee, Manager, or subtenants of Lessee or Manager, and their
respective employees, agents or independent contractors.

– Lessor indemnifies Lessee Indemnified Parties. Lessee indemnifies Lessor Indemnified Parties.

While the first and third are close, they aren’t identical and the second is more
of an overall summary. We note that these are all correct responses but also
not something one could plugin in to a workflow automation tool without a lot
of additional post-processing (e.g., in the flavour of nugget matching [9]). To
further illustrate this problem, we present the responses from the same prompt
with a different mutual environmental indemnity clause:

– Tenant indemnifies Landlord for claims arising from the introduction of hazardous material on or
after the Effective Date, and Landlord indemnifies Tenant for claims arising from the existence
of hazardous material or violation of Environmental Requirements prior to the Effective Date.

– In the first paragraph Tenant indemnifies and defends Landlord, and in the second paragraph
Landlord indemnifies and defends Tenant.

– Tenant indemnifies Landlord. Landlord indemnifies Tenant.



A Search for Prompts: Generating Structured Answers from Contracts 5

Again, we see responses that are factually correct but are also quite different
from the responses for the previous clause. As should be apparent by now, this
inconsistency and unreliability as well as response verbosity is not ideal for sim-
plifying work process and may just exacerbate things in the long run.

4 Finding Reusable Prompt Templates

Before the launch of OpenAI’s ChatGPT in December 2022, we had spent time
investigating the utility of MNLI [31] pre-trained encoder models10 for structured
question answering (described in Section 5.1) but found that the technique was
only suitable when clauses and options could fit in relatively small context win-
dows of such models [28,33]. Using similar clauses to the previous section but
modelling the question closer to one of entailment, we were able to achieve a
more desirable result with ChatGPT on a small set of examples. From this suc-
cess, we built a tool11 that would allow internal experts to try various prompt
and option combinations using previously annotated legal clauses as the context
for the prompt. The remainder of this section discusses the overall methodology
used and the key findings from that process on how prompt templates might be
structured.

4.1 Prompt Exploration Methodology

Over a 3.5 week period, several members of our team tried over 700 prompt
and clause combinations to explore how sensitive prompts were to variations in
clauses.12 Prompts were based on an existing set of questions that we curated
ourselves but also includes some end-user provided examples. All of the prompt
contexts were previously annotated for supervised machine learning tasks for
the purposes of content extraction, previously described in [23,11] and derived
from legal documents primarily from EDGAR (https://www.sec.gov/edgar)
and SEDAR (https://www.sedar.com/). While using the tool, a team member
would select a clause type (e.g., assignment, environmental indemnity) and craft
a prompt to answer a related question. They would then run this prompt on
as many examples of this clause type as they desired, rating the responses, and
making tweaks as they went along to improve the consistency and reliability of
responses. We note that some tweaks were made to the tool’s interface during
this period with the goal of simplifying the testing and evaluation experience
with no material effect made to the outcomes discussed.

Team members were free to progress at their own rate and develop their
own strategies to avoid locking anyone into a particular style. Though active
10 Specifically https://huggingface.co/valhalla/distilbart-mnli-12-1 and re-

lated models.
11 Description of the tool is omitted here for brevity. It is available at https://github.

com/zuvaai/gpt-tool.
12 We note that for all practical purposes, outside of some initial testing, temperature

was set fairly consistently to 0.

https://www.sec.gov/edgar
https://www.sedar.com/
https://huggingface.co/valhalla/distilbart-mnli-12-1
https://github.com/zuvaai/gpt-tool
https://github.com/zuvaai/gpt-tool


6 Roegiest et. al.

discussions took place around different prompting styles and how certain edge
cases could be avoided or addressed more generally. Invariably this approach
has meant that some redundant work has likely occurred which is not ideal but
was unlikely to be avoided. This also means that different understandings of the
various prompting strategies have also developed which we believe is worth the
additional effort.

4.2 Prompt Template Key Aspects

Using the logs from our tool, one of the authors conducted a very light “thematic
analysis” inspired review of the logs to examine trends in both prompts and in the
notes themselves. While we have not “cracked the code” of one-size-fits-all prompt
templates and suspect that doing so is a Sisyphean task, we have learned some
interesting things on how to steer a generative AI model in returning answers
in the structured format that we find desirable. In the following, we provide the
insights and key aspects we have gleaned from the analysis of logs and group
discussions that occurred while undertaking this search for prompt templates.

Justification As their name implies, generative models are designed to generate
text and when answering questions one such source of generation is in justifying
a choice. Conceptually this is useful but as a component in workflow/process
automation, it is not. Unlike other approaches [34], we very consistently added
a constraint instructing the model to respond “without providing justification”
or “without providing other information” to nudge the model away from gener-
ating text that may or may not be reliable and further complicate downstream
processing.

Option Selection An additional aspect of our prompts was in specifying re-
sponses should only be from a predefined list of options which we found helps to
guide the model to actually select one of the options. Unfortunately, this had a
confounding factor in that depending on how this was specified (e.g., “only select
the numbered option that is implied by the clause”), the generative model may
respond with just the number, “Option i ”, or the formatted option (e.g., (3),
3.), or the entire option, or just the answer text of the option (e.g., “Landlord
indemnifies Tenant”). None of these responses are bad but does mean that some
downstream processing is necessary to clean-up responses to a canonical format
but could be resolved by setting max_tokens when generating a response.

Options over Prompts The overarching structure of a prompt can certainly
have an effect on how succinct and accurate a response can be and is why
we have devoted so much time to finding good templates. But throughout the
process we noticed that how answers were phrased had more impact on the end
response generated by the model. In particular, we found that options should be
as complete a thought or sentence as possible to avoid leaving openings for the



A Search for Prompts: Generating Structured Answers from Contracts 7

model to begin generating additional text (e.g., often elaborating on an option
to finish the sentence). We also saw examples where ending options in full-stops
or wrapping them in quotations could mitigate generation even with sentence
fragments but this was not consistent.

Escape Hatches One of the most interesting aspects of our early trials and
even subsequent more thorough investigations with our prompt tool is the abil-
ity of the model to make assumptions when lacking sufficient data or context
in a clause. As an example, in the case of environmental indemnities where the
parties might actually be named (e.g., SmithCo, Joe Smith) rather than a de-
fined term (e.g., landlord, lessee). In such a case, the model often just made
assumptions about which party fulfilled a specific role without any prompting
or evidence. Interestingly, the model managed to get it right a fair number of
times but we hesitate to attribute this to any particular reason. Such aspects
can be remediated by ensuring those details are also provided as context but the
willingness of the model to make assumptions is not ideal.

To combat this and prevent the model from making assumptions or trying
to free-form respond with an “unable to determine”-style response, we tried to
provide additional “rules” or “escape hatches” in our prompts to allow the model
to default to a safe choice. The most generic rule that we used was: If you cannot
determine which of the conditions are implied, respond with the exact text: ‘The
clause is silent.’ This statement required a bit of fine-tuning since an initial
attempt to use “answer with ...” often resulted in the model then generating a
response along the desired lines but the exact phrase. We posit that this is due
to the nature of how the model was trained and less due to explicit phrasing
(i.e., prompts asking the model to answer would often be generative in nature
in the training set). We have also tried similar but less generic escape hatches
where needed (e.g., the aforementioned indemnity situation) and the model will
make use of them with sufficient wordsmithing.

Multiple Selections Having a model produce multiple selections is critical
when it is possible for multiple conditions to be true and specifying all combi-
nations is not reasonably feasible (i.e., more than a handful of combinations).
While we did not spend quite as much time on these types of prompts as others,
we did determine that it is possible to do this and that there might be several
possible ways to perform the task.

The most obvious is just to direct the model to choose multiple options
(e.g., “If multiple options are implied by the clause, select all of the numbered
options that apply.”) but this has a surprising potential implication. The model
can be “too smart” and perhaps rely too much on a non-legal understanding
of English and conflate multiple terms of art in the legal world. For example,
prior to refinement of options, the model would often conflate “requiring to give
notice” and “requiring consent” and would tend to default towards the latter
when determining obligations around the assignment of a contract to another
party.



8 Roegiest et. al.

An alternative approach that we found had potential is to frame each op-
tion as a sub-prompt that required the model to answer “yes” or “no” (as to
whether the clause supported the option). In our basic exploration, this often
felt easier to get working more quickly but we have yet to expend a lot of effort
exploring further. The downside is that the aforementioned problems around
assumptions and language conflation were more pronounced and a bit harder to
tackle. Moreover, it is not clear whether or not just iteratively asking the options
as individual prompts (in the style of [34]) either independently or as part of a
larger “conversation” would yield superior results.

5 Structured Answer Generation

Before we address our evaluation of structured generation, we first discuss some
context setting for choosing this avenue of research. It would natural to believe
that training a discriminative multi-class classifier to obtain structured answers
to the questions presented in this work is a reasonable first choice. Such solutions
(e.g., SVMs, logistic regression) are well understood and highly optimized but
come with a flaw, they require sufficient examples of each class to be effective
(i.e., low prevalence classes can be hard to overcome). For example, landlord
indemnification is a relatively rare occurrence in our data and one for which
data augmentation is not guaranteed to work. Indeed, we have attempted to
address this in prior work [7], it did not consistently work well for especially low
prevalence or nuanced differences between options. It has been our experience
that such cases arise naturally in the legal domain where rare outcomes tend to
be the most problematic and equally hard to identify.

Inspired by recent uses of large language models and textual entailment to
facilitate “zero-shot” question-answering, we put such methods to the test. We
begin with an examination of semantic matching as a baseline before compar-
ing with generative model prompting techniques and the differences in option
choices. We then explore the consistency and reliability of our empirical re-
sults before providing some initial experiments detailing how in-context learn-
ing [17,32] can improve even bad prompts.

5.1 Semantic Similarity and Answer Prediction

S1 S2 S3 S4
1 (6) 2 (71) 3 (39) 4 (5) A 1 (6) 2 (71) 3 (39) 4 (5) A 1 (6) 2 (71) 3 (39) 4 (5) A 1 (6) 2 (71) 3 (39) 4 (5) A

PIL-LegalBert 0 10 34 0 0.36 0 30 0 0 0.25 0 4 11 2 0.14 0 23 3 3 0.24
OpenAI Ada 0 1 0 3 0.03 0 0 0 4 0.03 0 1 2 2 0.04 0 0 20 2 0.18

OpenAI GPT-3.5 Turbo 6 60 23 1 0.74 6 44 27 2 0.65 5 58 24 1 0.73 5 67 6 1 0.65
OpenAI GPT-4 5 66 39 1 0.91 6 66 39 0 0.92 5 66 39 0 0.91 5 67 39 1 0.92

PaLM 2 0 58 39 1 0.84 4 53 39 1 0.79 4 55 39 0 0.81 4 56 39 0 0.82

Table 1: Number of correct predictions for each answer option and accuracy (A) with different
phrasings of the answer options and the prompts using the zero-shot semantic similarity approach
(rows 1-2) and generation (rows 3-5) for the indemnity question. The true distribution of the answers
is listed along with the answer options in brackets.

Given that our work was inspired by natural language inference (Section
3), we investigate the utility of a baseline method that is not generative but is



A Search for Prompts: Generating Structured Answers from Contracts 9

T1 T2
1 (4) 2 (81) 3 (40) 4 (2) 5 (57) A 1 (4) 2 (81) 3 (40) 4 (2) 5 (57) A

PIL-LegalBert 0 11 22 0 0 0.23 0 4 1 0 21 0.18
OpenAI Ada 0 0 0 0 6 0.04 0 0 0 0 1 0.01

OpenAI GPT-3.5 Turbo 3 56 19 1 0 0.55 0 66 18 0 1 0.59
OpenAI GPT-4 1 21 33 1 2 0.43 2 41 16 0 0 0.48

PaLM2 0 65 26 0 1 0.65 0 60 17 0 24 0.71
Table 2: Number of correct predictions for each answer option and accuracy (A) with different
phrasings of the answer options and the prompts using the zero-shot semantic similarity approach
(rows 1-2) and generation (rows 3-5) for the information-sharing question. The true distribution of
the answers is listed along with the answer option in brackets.

less restricted by the minimal context length in many popular encoder models
(e.g., BERT and its variants). We focus on zero-shot question answering using
semantic similarity, which aims to identify which of the options from a given set
of options is best supported by the given text [28,33].

Given the text of the clause T , and a set of answer options H, we use a
sequence embedding model M to obtain the embeddings for the clause and the
answer options and then predict the answer which has the highest similarity with
the clause as follows: argmaxh∈H cos (M (T ) ,M (h)).

We use two legal questions "In the clause below, who indemnifies whom?"
(“indemnity question”) and "For what purpose are the parties sharing informa-
tion according to the clause below?" (“information-sharing question”) to test the
effectiveness of this method. The test datasets for the two questions consisted
of a set of legal clauses, which we assume are previously extracted from the
contracts through manual means detailed in prior work [23]. For the indemnity
question, we used a set of 121 "environmental indemnity" clauses, which de-
scribe the provisions for security or protection from losses or damage caused by
environmental contamination or disasters. For the information-sharing question,
our test dataset comprised of 143 "Permitted Use of Confidential Information"
clauses, which describe the purposes for which information shared between the
parties may be used. From our observations in Section 3 that the phrasing of
the question and the answer options plays an important role in the answers gen-
erated by the models, we tested out four sets of answer options (S1- S4) for the
indemnity question and two sets of answer options (T1-T2) for the information-
sharing question, shown in Figures 2 and 3 respectively.

The test clauses for the indemnity question have the distribution of the an-
swers: 6, 71, 39, and 5 for each of the four options. Unlike the indemnity question
where only one of the options is applicable, the information-sharing question is a
multi-select question (i.e., multiple options may be applicable). The test clauses
for this question have the answers distributed as 4, 81, 40, 2, and 57, respectively.
There are also 13 clauses that do not contain sufficient information to determine
the correct answer. For the information-sharing question, we perform a lenient
evaluation of the results and consider the prediction correct if at least one of the
correct options was predicted. Such lenient evaluation is to make overall com-
parisons between methods easier without having to also attempt to learn (or
guess) a threshold in the case of semantic similarity.

We ensured all clauses were less than 20, 000 characters in length in order
to adhere to the token limits of the OpenAPI models. As we can see, both
datasets exhibit the prevalence problem we described at the beginning of this



10 Roegiest et. al.

Fig. 2: Four sets of answer options for the
indemnity question.

Fig. 3: Two sets of answer options for the
information-sharing question.

section, which means that traditional classifiers are unlikely to handle this sce-
nario well [14,5,7].

We used two large language models to compare the performance of this
method: (1) the LegalBERT model trained on the Pile-Of-Law dataset [13]13
and (2) the OpenAI Ada model [18].

For a given model, we used cosine similarity between options and clause
embeddings to choose the most similar option to a given clause. We then com-
puted the accuracy of option to ground truth for each embedding model and
present the results of this evaluation in Tables 1 and 2. We observe that the
LegalBERT embeddings, which were trained on contracts, performed moder-
ately better than the OpenAPI Ada embeddings, for which the exact training
details are not known. For instance, the terms Lessee and Tenant have a 90%
similarity using LegalBERT embeddings, whereas the similarity drops to 87%
when using the OpenAI Ada embeddings. Though this may not seem like a sub-
stantive difference, it is apparent that explicitly including the terms Lessee and
Tenant in the answer options S4 makes a moderate difference in the performance
using the Ada embeddings but less so for LegalBERT. Unsurprisingly, phrasing
the answer options differently leads to different accuracy regardless of model
choice. For example, to identify mutual indemnification, the option “There is
mutual indemnification” in S1 and S3 leads to a better result than any other
form of the answer option.

5.2 Generating Structured Answers

From our manual exploration for reusable prompts, we had sufficient evidence
to indicate that we should more thoroughly and empirically investigate this
approach for structured answer generation. Accordingly, we evaluate the effec-
tiveness of our approach on the two questions and examine how our approach
holds up against the semantic similarity approach of the previous section. To
test the effectiveness of structured answer generation, we employed OpenAI’s
13 https://huggingface.co/pile-of-law/legalbert-large-1.7M-2

https://huggingface.co/pile-of-law/legalbert-large-1.7M-2


A Search for Prompts: Generating Structured Answers from Contracts 11

GPT-3.5-Turbo [20] and GPT-4 [19], and Google’s PaLM2 [2] Generative AI.

We started with the following prompt:
P1: Referring only to the information contained in the clause below, only select which one

of the below numbered options is implied by the clause, without providing any other
information or justification. If you cannot determine which of the conditions are
implied, respond with the exact text: “The clause is silent”.

{{Options}}
{{Clause}}

{{Options}} is replaced by the options in each set from the previous section
and {{Clause}} is replaced by the text of the clause. A prompt styled in this
manner aims to ensure that only one of the answer options is generated, and
that the option generated is not followed by any additional text, thereby render-
ing a structured response. The prompt provides an escape hatch for the model
(returning “The clause is silent.”) if all the relevant answer options were not pro-
vided or the clause does not contain sufficient information. The response from
the API is parsed to obtain the structured answer to the question.

From Tables 1 and 2, we can easily see that the performance of this approach
non-trivially and substantially improves over the semantic matching approach.
Consistent with the similarity results, different forms of answer options perform
differently even for generative models but with still generally okay performance
in the worst case. Interestingly, there does not appear to be any strong corre-
lation in how well answer options will perform between either approach (e.g.,
S3 is the second best performing for GPT-3.5-Turbo but the worst for seman-
tic similarity). We also note that the rare clauses where either the “Landlord
indemnifies Tenant” or there is “No indemnification” are correctly answered by
the generative models. Options T2 yield substantive improvement over options
T1 showing that clear, complete sentences as options lead to better accuracy.
Among the generative models, the more complex GPT-4 and PaLM2 obviously
perform better than GPT-3.5-Turbo. On the indemnity question, both these
models are able to correctly identify all instances of mutual indemnification.
However, they don’t do as well on the information-sharing question, most likely
because the prompts and the options are not well-structured. A prompt styled
for one model, despite performing relatively well, is not guaranteed to yield op-
timal results with other generative models. While not surprising, it does suggest
a developer ought to choose a model and stick with it.

Despite styling the prompt to ensure that only one of the answer options was
generated, we found that there was some lack of consistency in the responses
(particularly those of GPT-3.5-Turbo) across clauses. For instance, when pro-
vided with options S1 for the indemnity question, the response, “The clause im-
plies that Tenant indemnifies Landlord.”, was generated for some clauses instead
of “Tenant indemnifies Landlord.”. The model also generated “Lessee indemni-
fies Lessor ” for some clauses instead of “Tenant indemnifies Landlord.”, which
we posit in due to the nature of the language used in some clauses (i.e., the
model tries to match the language of the clause). In two to three instances, the
model also provided a summary of the clause in addition to the answer option.
For example, one of the responses generated was “Lessee indemnifies Lessor and



12 Roegiest et. al.

its Affiliates for any and all Environmental Costs incurred in connection with
the presence or alleged presence of Hazardous Substances or Mold on or near the
Leased Property.”

This necessitated some post-processing (e.g., substring matching) of the re-
sponse to determine which answer option applied where possible. Such an out-
come is not what we desired to have happen but is an aspect we are willing to
bend on, especially when such post-processing is not complex (i.e., substring or
synonym substitution is preferable to nugget-matching).

There were 16, 15, 12, and 9 unique responses generated by GPT-3.5-Turbo
for each of the four answer options for the indemnity question. It is our best
guess that S4 generates the least number of unique responses because the an-
swer options explicitly note that the terms Lessee, Tenant, and Seller and the
terms Lessor, Landlord, and Buyer represent the same entities. Surprisingly, the
answers generated for the information-sharing question were more consistent.
There were only two instances where a summary of the clause was generated.

While this approach yielded unintended response creativity by the generative
model, we think this is a strong indicator that such an approach may be viable for
more use cases. To further attempt to refine our approach and prompt phrasings,
we detail in the next section how “prompt sensitive” a generative model can be
and how we could limit some of the post-processing. For brevity and more focused
analysis, we present results only for GPT-3.5-Turbo henceforth.

5.3 Sensitivity to Prompts

As we saw in the previous section, one glaring issue with using a generative
model for structured answer generation is that it can still get creative in its
responses despite our attempts to limit this creativity. Our first idea was that
perhaps the order of options would play a part but shuffling the order of options
did not change any outcomes and so we do not report on them further. Instead,
we report on how changing aspects of the prompt template affect the outcome of
the results by introducing new rules or adding more explicit rules for the model
to follow.

To address the issues around the model getting too creative in its responses
when using P1, we sought to limit the results by requiring the model to respond
only with the numbered option rather than the entire option:

P2: Referring only to the information contained in the clause below, only select the numbered
option that is implied by the clause, without providing any other information or
justification. If you cannot determine which of the conditions are implied, respond with
the exact text: “The clause is silent”.
{{Options}}
{{Clause}}

We also created a prompt, which would allow the model to make multiple
selections and making the rules and options more explicit:

P3: Using the text provided, follow the subsequent instructions:
{{Clause}}
Respond with all options which are implied by the provided text, without providing any
other information or justification and by following the rules.
Rules:

- If it cannot be determined which of the conditions are implied or if it is required



A Search for Prompts: Generating Structured Answers from Contracts 13

to make assumptions, respond with the exact text: "Unable to determine."
- If the terms in the options are not used in the text, respond with the exact text:
"Unable to determine."

Options:
{{Options}}

Table 3 shows the difference in the number of correct answers generated for
the indemnity question using our three prompt templates and the answer op-
tions S1. Perhaps unsurprisingly, the small modifications made to P2 do not
substantively change the model’s ability to produce the correct answer nor did
it particularly limit the creativity of responses generated by the model. The
much larger changes in P3, on the other hand, brought about substantive im-
provements to the model’s responses but also meant that we had slightly more
post-processing to do to accommodate multiple responses being returned. While
the latter was not unexpected, it does illustrate a further complication that could
spur more model creativity in other situations, especially those where the answer
options may be sentence fragments.

For the information-sharing question, we found that asking the model to
pretend to be a party to the agreement, explicitly including the question in
the prompt, and allowing for multiple option selection improved the accuracy
substantially, as seen in Table 4. This type of prompt styling does not lend as
easily to the creation of templates, as it requires the user to provide a question
along with the options. However, the improvement in accuracy is worth the
additional effort.

P4: Read the following permitted use of confidential information legal clause:
{{Clause}}
Pretend you are a party to the agreement in which the permitted use of confidential
information legal clause you have read exists in. You only know what you have read in
this prompt. For what purposes are you allowed to use the confidential information? If
the clause does not specify the purpose for which you may use the confidential
information, respond with: "Unable to determine". In your response, only include the
following most correct groups:
{{Options}}
In your response, only include the bucket names above. Do not provide an explanation
or additional information.

1 (6) 2 (71) 3 (39) 4 (5) A
P1 6 60 23 1 0.74
P2 5 65 19 1 0.71
P3 4 62 35 1 0.85

Table 3: Number of correct predictions for
each answer option and accuracy (A) with
different prompts and options S1 for the in-
demnity question. The true distribution of
the answers is listed along with the answer
options in brackets.

1 (4) 2 (81) 3 (40) 4 (2) 5 (57) A
P1 0 66 18 0 1 0.59
P4 4 73 24 2 5 0.64

Table 4: Number of correct predictions for
each answer option and accuracy (A) with
different prompts and options T2 for the
information-sharing question. The true dis-
tribution of the answers is listed along with
the answer options in brackets.

Throughout our investigation, we have regularly found that using a consistent
template and aiming for option correctness has tended to produce more viable
results in the longer term but does have some periods of inconsistency and
unreliability in the results until the right options are found. Indeed, trying to
min-max the prompt template may not always yield the most optimal outcomes
as P2 is ever so slightly worse than P1 in our tests. While P3 and P4 did
substantially improve the overall effectiveness, this improvement was based on
a decent amount of trial and error in our prompt tool and is not an approach



14 Roegiest et. al.

we want to undertake for every possible legal question, especially if it risks the
model becoming creative in its responses. Nor is this an approach that we want
an end-user to have to replicate as it would be far too onerous for them.

All that being said, in our tests throughout this section and the previous
one, we have found that once a prompt template and a set of options have hit
a steady state in consistency then they do, in fact, stay consistent (i.e., regen-
erating the response for the same combination of clause, prompt, and options
produces the same result). Using P1, we used the GPT-3.5-Turbo API to re-
run the generation of responses 5 times and saw that the results were extremely
consistent with no more than a couple of responses changing. Unfortunately, the
reliability of responses is not ideal as we discussed earlier but does show that the
right combination of prompt and options can non-trivially reduce the amount of
variation (e.g., P4 having slightly more than half the variations than P1).

5.4 In-Context Learning

If we set aside issues with the model generating the exact response we want and
focus solely on the effectiveness of the technique, we see that our structured an-
swer generation approach is definitely better than using semantic similarity (Sec-
tion 5.2) but that does not mean the technique is ready for end-user consumption
(i.e., business processes likely want better than 0.74 accuracy). A simple way to
potentially help the model “understand” the task that we are instructing it to
perform is to use some form of few-shot learning, specifically in-context learn-
ing [17,32], which has been shown to improve model effectiveness [4,12].

In our case, we leverage the fact that GPT-3.5-Turbo is a chat-style model
and can “seed” it with labelled examples as part of the conversation (i.e., we
pre-populate earlier parts of the conversation with both prompt and answer).
To do so, we augment a simple prompt, P1, and answer set, S1, with randomly
selected human labelled examples for each of the four options. We create two
example sets for the indemnity question, E1 and E2, each containing 4 randomly
selected example clauses, one for each answer option. As seen in Table 5, there
is reasonable improvement in the accuracy with both example sets. But when
augmented with both example sets (two examples for each answer option), there
is a stark improvement in accuracy. We find that the model is able to identify
tricky cases like mutual indemnification when previously it had struggled with
just P1 and S1. Moreover, this technique can dramatically reduce the amount
of post-processing necessary to map responses back to options. For example, for
the indemnity question, the number of responses needing cleanup drop by at
least 50 percent; 83 responses with S1 to 22 responses with S1 and the two
example sets.

No examples E1 E2 E1 + E2
Indemnity 0.74 0.83 0.79 0.87

Information-sharing 0.55 0.61 0.62 0.64
Table 5: Accuracy when GPT-3.5-Turbo is provided in-context with different sets of examples,
prompt P1, and answer sets S1 and T1 for the indemnity and information-sharing questions.



A Search for Prompts: Generating Structured Answers from Contracts 15

Utilizing in-context learning has allowed us to improve response generation
substantively while incurring the small expense of annotating some additional
clauses for the appropriate answer. This indicates that there may be a valuable
trade-off to identify between prompt (or option) engineering and just spending
the time providing a small handful of examples. Exploring methods to determine
when prompt engineering has diminishing results and it would be better to
provide examples is an interesting avenue of future work that we plan to explore.

6 Limitations

For the sake of experimental simplicity and general ease of use, we have focused
most of our testing on the GPT-3.5-Turbo model. Preliminary results on GPT-4
and PaLM2 in Tables 1 and 2 show that the prompts that work well with GPT-
3.5-Turbo can be strong starting points but may not be optimal out of the gate.
Based on this, we feel comfortable saying that our proposed solution is viable
on other generative AI models with the reasonable caveat that no one prompt is
a golden ticket for success. Moreover, as there are increasing numbers of models
being made available for commercial use [8,3,1,27], we focused on GPT-3.5-Turbo
because of its reasonable costs and general widespread adoption.

We have also largely operated under the assumption that the user of the
underlying system has the correct context for a clause available to them to
ask questions about. While the end-to-end effectiveness will matter in a final
system (e.g., using some other information retrieval systems to first identify the
clauses), we believe that our prompt structure and escape hatches will help a
model overcome false positives but leave investigation to future work.

7 Conclusions and Future Work

We have presented a structured answer generation task based on identifying the
correct answer for a legal question given an associated clause from a document,
detailed some issues with relying solely on natural language question answering,
and then present insights gleaned from a manual exploration of the prompt space
over 3.5 weeks. Using these insights, we compared the reliability and consistency
of structured answer generation for two legal questions and several hundred ex-
amples and found that our proposed technique is superior to semantic matching
between clauses and answer options, especially through small tweaks to prompts
and the use of in-context learning.

Looking forward, we plan to more exhaustively investigate how many differ-
ent prompt templates might be needed for our use cases and whether or not we
can identify good and bad answer options (i.e., to avoid users having to guess and
check). Additionally, being able to automatically detect whether or not further
refinement of options or providing examples for in-context learning is a lucrative
avenue as it may reduce user frustration to just provide labelled examples. As the
generative model space stabilizes, we also plan to investigate the transferability
of our prompts to other models to determine their actual reusability.



16 Roegiest et. al.

References

1. Almazrouei, E., Alobeidli, H., Alshamsi, A., Cappelli, A., Cojocaru, R., Debbah,
M., Goffinet, E., Heslow, D., Launay, J., Malartic, Q., Noune, B., Pannier, B.,
Penedo, G.: Falcon-40B: an open large language model with state-of-the-art per-
formance (2023)

2. Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S.,
Taropa, E., Bailey, P., Chen, Z., et al.: Palm 2 technical report (2023)

3. Biderman, S., Schoelkopf, H., Anthony, Q., Bradley, H., O’Brien, K., Hallahan,
E., Khan, M.A., Purohit, S., Prashanth, U.S., Raff, E., Skowron, A., Sutawika,
L., van der Wal, O.: Pythia: A suite for analyzing large language models across
training and scaling (2023)

4. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Win-
ter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark,
J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language
models are few-shot learners (2020)

5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research 16,
321–357 (2002)

6. Chiang, W.L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang,
S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An open-source
chatbot impressing gpt-4 with 90%* chatgpt quality (March 2023), URL https:
//vicuna.lmsys.org

7. Chitta, R., Hudek, A.K.: A reliable and accurate multiple choice question answer-
ing system for due diligence. In: Proceedings of the International Conference on
Artificial Intelligence and Law. p. 184–188 (2019)

8. Conover, M., Hayes, M., Mathur, A., Meng, X., Xie, J., Wan, J., Gh-
odsi, A., Wendell, P., Zaharia, M.: Hello dolly: Democratizing the magic
of chatgpt with open models. https://www.databricks.com/blog/2023/03/24/
hello-dolly-democratizing-magic-chatgpt-open-models.html (March 2023)

9. Dang, H.T., Lin, J., Kelly, D.: Overview of the trec 2006 question answering track.
In: Proceedings of the Text Retrieval Conference (2006)

10. Dimitrakis, E., Sgontzos, K., Tzitzikas, Y.: A survey on question answering systems
over linked data and documents. Journal of intelligent information systems 55,
233–259 (2020)

11. Donnelly, J., Roegiest, A.: The utility of context when extracting entities from
legal documents. In: Proceedings of the 29th ACM International Conference on
Information & Knowledge Management. pp. 2397–2404 (2020)

12. Gao, T., Fisch, A., Chen, D.: Making pre-trained language models better few-
shot learners. In: Proceedings of the International Joint Conference on Natural
Language Processing. pp. 3816–3830 (2021)

13. Henderson, P., Krass, M.S., Zheng, L., Guha, N., Manning, C.D., Jurafsky, D., Ho,
D.E.: Pile of law: Learning responsible data filtering from the law and a 256gb
open-source legal dataset (2022)

14. Japkowicz, N.: The class imbalance problem: Significance and strategies. In: Pro-
ceedings of the International Conference on artificial intelligence. vol. 56, pp. 111–
117 (2000)

https://vicuna.lmsys.org
https://vicuna.lmsys.org
https://www.databricks.com/blog/2023/03/24/hello-dolly-democratizing-magic-chatgpt-open-models.html
https://www.databricks.com/blog/2023/03/24/hello-dolly-democratizing-magic-chatgpt-open-models.html


A Search for Prompts: Generating Structured Answers from Contracts 17

15. Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y.J., Madotto, A.,
Fung, P.: Survey of hallucination in natural language generation. ACM Computing
Surveys 55(12), 1–38 (2023)

16. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and
predict: A systematic survey of prompting methods in natural language processing.
ACM Computing Surveys 55(9) (2023)

17. Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., Zettlemoyer,
L.: Rethinking the role of demonstrations: What makes in-context learning work?
(2022)

18. Neelakantan, A., Xu, T., Puri, R., Radford, A., Han, J.M., Tworek, J., Yuan, Q.,
Tezak, N., Kim, J.W., Hallacy, C., Heidecke, J., Shyam, P., Power, B., Nekoul, T.E.,
Sastry, G., Krueger, G., Schnurr, D., Such, F.P., Hsu, K., Thompson, M., Khan,
T., Sherbakov, T., Jang, J., Welinder, P., Weng, L.: Text and code embeddings by
contrastive pre-training (2022)

19. OpenAI: Gpt-4 technical report (2023)
20. Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.L., Mishkin, P., Zhang,

C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., Lowe, R.: Training
language models to follow instructions with human feedback (2022)

21. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving lan-
guage understanding by generative pre-training (2018)

22. Reynolds, L., McDonell, K.: Prompt programming for large language models: Be-
yond the few-shot paradigm (2021)

23. Roegiest, A., Hudek, A.K., McNulty, A.: A dataset and an examination of identi-
fying passages for due diligence. In: The 41st international ACM SIGIR conference
on research & development in information retrieval. pp. 465–474 (2018)

24. Sanh, V., Webson, A., Raffel, C., Bach, S.H., Sutawika, L., Alyafeai, Z., Chaffin,
A., Stiegler, A., Scao, T.L., Raja, A., et al.: Multitask prompted training enables
zero-shot task generalization (2021)

25. Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X., Guestrin, C., Liang, P.,
Hashimoto, T.B.: Stanford alpaca: An instruction-following llama model (2023)

26. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T.,
Rozière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave,
E., Lample, G.: Llama: Open and efficient foundation language models (2023)

27. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bash-
lykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C.,
Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao,
C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kar-
das, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux,
M.A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov,
T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Sal-
adi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang,
B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan,
A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom,
T.: Llama 2: Open foundation and fine-tuned chat models (2023)

28. Veeranna, S.P., Nam, J., Mencıa, E.L., Fürnkranz, J.: Using semantic similarity
for multi-label zero-shot classification of text documents. In: Proceeding of Euro-
pean Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. pp. 423–428 (2016)



18 Roegiest et. al.

29. Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y., Mirzaei, A., Arunkumar,
A., Ashok, A., Dhanasekaran, A.S., Naik, A., Stap, D., et al.: Benchmarking gen-
eralization via in-context instructions on 1,600+ language tasks (2022)

30. White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A.,
Spencer-Smith, J., Schmidt, D.C.: A prompt pattern catalog to enhance prompt
engineering with chatgpt (2023)

31. Williams, A., Nangia, N., Bowman, S.: A broad-coverage challenge corpus for sen-
tence understanding through inference. In: Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. pp. 1112–1122 (2018)

32. Xie, S.M., Raghunathan, A., Liang, P., Ma, T.: An explanation of in-context learn-
ing as implicit bayesian inference (2022)

33. Yin, W., Hay, J., Roth, D.: Benchmarking zero-shot text classification: Datasets,
evaluation and entailment approach (2019)

34. Yu, F., Quartey, L., Schilder, F.: Legal prompting: Teaching a language model to
think like a lawyer (2022)

35. Zhang, T., Ladhak, F., Durmus, E., Liang, P., McKeown, K., Hashimoto, T.B.:
Benchmarking large language models for news summarization (2023)

36. Zhou, Y., Muresanu, A.I., Han, Z., Paster, K., Pitis, S., Chan, H., Ba, J.: Large
language models are human-level prompt engineers (2022)


	A Search for Prompts: Generating Structured Answers from Contracts

