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ABSTRACT

High-dimensional linear models are some of the best performing
collaborative filtering models today. They learn full-rank item em-
beddings by inverting the Gram matrix calculated from the input
user-item matrix. The entries of this Gram matrix are item co-
occurrence counts which are unbounded. As a result, the Gram
matrix is dominated by larger co-occurrence counts of popular
items. In this paper, we propose to alleviate this issue by incorporat-
ing cosine similarity with the co-occurrence counts. We show that
this increases the recommender diversity and more non-popular
items are recommended. We also show that this increase in di-
versity correlates with an increase in accuracy signifying that the
newly recommended non-popular items are relevant. Finally, we
also present a more efficient procedure to obtain the parameters
of linear auto-encoding recommender and show that it reduces
the running time by at least half on the three standard publicly
available datasets used for this line of research.
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1 INTRODUCTION

Binary implicit feedback is one of the most simple signals of user
preference. In this type of data, a 1 denotes that the user has inter-
acted with the item and a 0 denotes the absence of an interaction. By
∗This work was done prior to joining Amazon while the author was affiliated with
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utilizing the implicit feedback from multiple users we can employ
collaborative filtering techniques to make recommendations of new
items to a user.

Recently, auto-encoder based collaborative filtering methods
[2, 4–6] have shown state-of-the-art performance for the recom-
mendation task. These work by taking a user’s implicit feedback
vector over the items as the input and then performing some op-
erations (linear or non-linear) to attempt to recreate this vector at
the output. These auto-encoders have mechanisms that discourage
the model from learning the identity function and that force the
model to learn the underlying item interactions. These interactions
are then used to generate the output.

A subset of auto-encoder recommenders are linear full-rank auto-
encoders [5, 6]. They perform the linear operation of multiplying
the input with a full-rank item interaction matrix 𝐵 to subsequently
recreate the input. This simple method is recently one of the best
implicit feedback recommenders [5, 6].

To obtain the item interaction matrix 𝐵, existing methods [5, 6]
rely on the Gram matrix. The 𝑖, 𝑗 entry of Gram matrix is the num-
ber of users that have consumed items 𝑖 and 𝑗 together. However,
this can bias the recommender to recommend popular items be-
cause items with larger co-occurrence counts dominate the Gram
matrix. Like the Gram matrix, the cosine similarity matrix also
relies on the co-occurrence counts, but it normalizes to account for
the popularity bias. In this paper, we show that by combining the
cosine similarity with the Gram matrix we can recommend more
non-popular items and hence increase the overall diversity of the
recommender. In addition, we show that this diversity comes at
no accuracy cost, and the accuracy increases in proportion to the
increase in diversity.

Linear auto-encoders, like Balen and Goethels [6], calculate the
inverse of the Gram matrix followed by its Cholesky decomposi-
tion. These operations can be computationally intensive for larger
datasets. We show that an alternative procedure to perform the
Cholesky decomposition followed by forward substitution leads to
faster wall clock times while being theoretically equivalent.

The main contributions of this paper are as follows:

• We illustrate the usefulness of injecting the cosine similarity
signal along with the co-occurrence signal and show that
it increases the recommender diversity by recommending
non-popular items.

• We show that recommending non-popular items increases
the accuracy of the recommendation.

• We provide of more efficient implementation of linear auto-
encoders that decrease the running time by at least half.
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Algorithm 1: Training eCHOL in Python 3

Input: data Gram-matrix 𝐺 := 𝑋⊤𝑋 ∈ R𝑁×𝑁 ,
L2-norm regularization-parameter 𝜆 ∈ R+.

Output: weight-matrix 𝐵 with zero diagonal.
𝑑𝑖𝑎𝑔𝐼𝑛𝑑𝑖𝑐𝑒𝑠 = numpy.diag_indices(𝐺 .shape[0])
𝐺 [𝑑𝑖𝑎𝑔𝐼𝑛𝑑𝑖𝑐𝑒𝑠] += 𝜆

𝑄 = scipy.linalg.cholesky(𝐺 , lower=True)
𝑃 = scipy.linalg.cho_solve((𝑄 ,True), np.eye(𝑄 .shape[0]))
𝐵 = 𝑃 / (-numpy.diag(𝑃 ))
𝐵 [𝑑𝑖𝑎𝑔𝐼𝑛𝑑𝑖𝑐𝑒𝑠] = 0

2 LINEAR AUTO-ENCODERS

Let the input implicit feedback of𝑀 user and𝑁 items be represented
by an𝑀×𝑁 binary matrix𝑋 . Linear auto-encoders aim to learn the
parameter matrix 𝐵 ∈ 𝑅𝑁×𝑁 to solve the following least-squares
problem:

∥𝑋 − 𝑋𝐵∥2
𝐹 + 𝜆∥𝐵∥2

𝐹 (1)
The closed form solution to this is called the EASE[5] recom-

mender:
𝐵 = 𝐼 − 𝑃𝐷−1 (2)

where, 𝐼 is the identity matrix, 𝐷 is the diagonal matrix that
contains the diagonal entries of 𝑃 and 𝑃 is the regularized inverse
of the Gram (co-occurrence) matrix, 𝐺 = 𝑋𝑇𝑋 , that is:

𝑃 = (𝑋𝑇𝑋 + 𝜆𝐼 )−1 (3)

An alternative procedure to solve the objective function of equa-
tion 1 was proposed in [6] in which they obtain 𝐵 as follows:

𝐵 = 𝛽𝐼 − 𝑃𝐷−1 = (𝛽𝐷 − 𝑃)𝐷−1 = 𝐴𝐷−1 (4)

where,𝐴 = 𝛽𝐷−𝑃 and 𝛽 is a scalar to make𝐴 positive semi-definite.
Then the Cholesky decomposition of 𝐴 is performed (i.e., 𝐴 = 𝐿𝑇 𝐿,
where 𝐿 is a lower triangular matrix) to yield:

𝐵 = 𝐿𝐿𝑇𝐷−1 (5)

And this is the CHOL [6] recommender. The CHOL recommender
performs this Cholesky decomposition to increase the recommen-
dation diversity [6](i.e., the number of unique items recommended).
However, it requires a larger computational time as it involves
calculating the inverse of the regularized Gram matrix (𝐺 + 𝜆𝐼 ) fol-
lowed by the Cholesky decomposition of𝐴 and both these matrices
are 𝑁 × 𝑁 .

In the following sections, we first show how we can make this
procedure more efficient, and then we show that adding the co-
sine similarity can increase the diversity without compromising
accuracy.

2.1 Efficient Implementation

Instead of calculating the inverse of𝐺 first and then performing the
Cholesky decomposition of 𝑃 , we first perform the Cholesky decom-
position of 𝐺 = 𝑄𝑄𝑇 , where 𝑄 is a lower triangular matrix. Then
we calculate 𝑃 by solving 𝑄𝑄𝑇 𝑃 = 𝐼 via backward substitution [3].
Since performing the backward substitution is 𝑂 (𝑁 )2 compared to
𝑂 (𝑁 )3 for calculating the inverse, this is a more efficient approach.
The Python code of eCHOL is given in Algorithm 1.

Table 1: Statistics of the datasets.

ML20M Netflix MSD

# of users 136,677 463,435 571,355
# of items 20,108 17,769 41,140
# of interactions 10.0M 56.9M 33.6M
% of interactions 0.36% 0.69% 0.14%
# of val./test users 10,000 40,000 50,000

We observe that 𝑃 = 𝐺−1 = 𝑄𝑇 −1
𝑄−1 = 𝑄−1𝑇𝑄−1. Let 𝑅𝑇 =

𝑄−1, then 𝑃 = 𝑅𝑅𝑇 . Substituting this into equation 2 results in 𝐵 =

𝐼 − 𝑅𝑅𝑇𝐷−1. Since we are concerned with ranking non-consumed
items, this is equivalent to 𝑅𝑅𝑇𝐷−1 which is the same form as the
CHOL solution from equation 5.

2.2 Incorporating Cosine Similarity

Linear auto-encoders rely on the information that is available in
the item co-occurrence matrix 𝐺 . A popular item will have high
co-occurrence counts compared to an unpopular item. These higher
counts dominate𝐺 , and, as a result, some relevant but non-popular
items will not be recommended.

To cater for this imbalance we can normalize each column of 𝑋
with its 𝐿2-norm. That is, 𝑋 = 𝑋𝑍 where 𝑍 is a diagonal matrix
that contains the 𝐿2-norm of each column of 𝑋 . This results in
each entry [𝑋𝑇𝑋 ]𝑖, 𝑗 ∈ [0, 1] corresponding to the cosine similarity
between items 𝑖 and 𝑗 .

Let 𝐵1 and 𝐵2 be the outputs of Algorithm 1 when𝑋𝑇𝑋 and𝑋𝑇𝑋

are passed as inputs respectively. Then, the final item interaction
matrix used for eCHOLc will be 𝐵 = 𝐵1 + 𝐵2.

3 EXPERIMENTAL SETUP

We compare the accuracy of eCHOLc in terms of NDCG@100,
Recall@20 and Recall@50 (similar to [2, 5, 6]) with linear auto-
encoders [5, 6], three non-linear auto-encodersMult-vae [4],Mult-
dae [4] and Sw-dae [2], and weighted matrix factorization [1]. The
evaluation is done on three commonly used datasets [2, 4–6]: Movie-
lens20M (ML-20M), Netflix and MSD. The details of the datasets
are shown in Table 1. For direct comparison, we use the strong
generalization setup that was used in [2, 4–6]: both validation and
test sets contain users that were not seen in the train set. We used
the same dataset splits (using the same random seed) to split the
data into train, validation and test sets.

4 RESULTS & DISCUSSIONS

4.1 Running time of eCHOL

Table 3 shows the training times in seconds for eCHOL along with
eCHOLc, CHOL and EASE. We see that the implementation of
eCHOL outlined in Algorithm 1 improves the running time by at
least two times compared to CHOL. In addition, it is also faster than
EASE. Finally, as expected the running time of eCHOLc is twice
that of eCHOL, however it is still faster than CHOL and EASE.
The only exception is the MSD dataset where EASE is faster than
eCHOLc.
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Table 2: Comparison betweeneCHOLcwith various baselines

on the test set. Results for the non-linear auto-encoders and

Wmf are consistent with [2].

(a) ML-20M

Recall@20 Recall@50 NDCG@100
eCHOLc 0.393 0.527 0.424
CHOL 0.391 0.521 0.420
EASE 0.391 0.521 0.420
Mult-vae 0.395 0.537 0.426
Mult-dae 0.387 0.524 0.419
Sw-dae 0.410 0.549 0.442

Wmf 0.360 0.498 0.386

(b) Netflix

Recall@20 Recall@50 NDCG@100
eCHOLc 0.363 0.447 0.395
CHOL 0.362 0.445 0.393
EASE 0.362 0.445 0.393
Mult-vae 0.351 0.444 0.386
Mult-dae 0.344 0.438 0.380
Sw-dae 0.370 0.458 0.404

Wmf 0.316 0.404 0.351

(c) MSD

Recall@20 Recall@50 NDCG@100
eCHOLc 0.334 0.428 0.390

CHOL 0.333 0.428 0.389
EASE 0.333 0.428 0.389
Mult-vae 0.266 0.364 0.316
Mult-dae 0.266 0.363 0.313
Sw-dae 0.317 0.416 0.372
Wmf 0.211 0.312 0.257

Table 3: Training time in seconds of eCHOL compared with

other linear auto-encoders. eCHOL is atleast 2 times faster

than CHOL.

Dataset EASE CHOL eCHOL eCHOLc
ML-20M 269.4 182.11 85.1 171.1
Netflix 275 330.82 117.65 251.34
MSD 1090.3 1472.2 719.24 1485.6

4.2 Performance of eCHOLc

Table 2 shows the performance of eCHOLc and the baselines on
the three datasets with respect to Recall@20,50 and NDCG@100.1
Among the linear auto-encoders, eCHOLc performs the best across
all three datasets. This suggests that incorporating cosine simi-
larity information helped the recommendation. Secondly, we ob-
serve that the relative performance improvement of eCHOLc over

1Since eCHOL is equivalent to CHOL its performance is not shown. The ablation study
of Table 5 provides the results for eCHOL.

Table 4: The total number of unique items recommended

to all test users. We see that eCHOLc increases the recom-

mender coverage from 0.6-39%.

Dataset CHOL eCHOLc % Increase
ML-20M 4291 5969 39.1
Netflix 9206 11402 23.85
MSD 40033 40276 0.61

EASE/CHOL is the most on ML-20M and the least on MSD. We will
see how the diversity of the recommendation can provide more
insights into these observations.

Sw-dae is the strongest baseline as it provides the best results
on two out of the three datasets. It is a non-linear auto-encoder
that relies on a sparse and wide bottleneck layer to encode item
relationships. But this bottleneck layer is not as wide as the full-
rank embeddings obtained by linear models and as a result on the
largest dataset (MSD) all linear full-rank auto-encoders outperform
it by a considerable margin and eCHOLc provides the best accuracy.

4.3 Non-popular Items and Accuracy

We refer to the recommender diversity (or coverage) as the total
number of unique items recommended across all users. Table 4
shows the diversity of eCHOLc versus CHOL for all three datasets.
We see that eCHOLc increased the recommendation diversity be-
tween 0.6% and 39% compared to CHOL depending on the dataset.
This increase is due to eCHOLc incorporating the additional in-
formation from cosine similarity which CHOL does not exploit.
But what is more interesting is that the increased diversity cor-
relates with the increase in accuracy in Table 2. For example, for
ML-20M we see the greatest increase in diversity and for MSD we
see the least. Looking closely at Table 4 we notice that CHOL is
already recommending almost all the items hence there is little
room for improvement, but for ML-20M there is much more room
for improvement in diversity. This also suggests that the issue of
popularity bias is more prevalent in ML-20M and the Gram matrix
based CHOL suffers for it.

To see what type of additional items are recommended by incor-
porating the cosine similarity, we show the frequency of the 39%
new items recommended by eCHOLc for ML-20M in green in Fig-
ure 1. The other recommended items are shown in blue. The y-axis
shows the number of times each item appeared in the training set
and the x-axis denotes the item ID. Figure 1(b) is the same as Figure
1(a) but its y-axis is in log scale. We see that all the new items rec-
ommended due to incorporating cosine similarity are non-popular
(i.e., consumed less than 600 times in the training set). This con-
forms with our intuition that by incorporating the cosine similarity
we can encourage the recommendation of the non-popular (long-
tail) items. Thus, eCHOLc can increase accuracy by recommending
more diverse items which are non-popular. This is in contrast to
the traditional notions of the accuracy-diversity trade-off.

4.4 Ablation Study

We perform an ablation study to see the effect of the Gram and
Cosine similarity matrix components of eCHOLc. Table 5 shows
the NDCG and Recall scores for:
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Figure 1: The train set frequency of the additional items

recommended by eCHOLc due to the addition of cosine sim-

ilarity is shown in green. The frequency of the items recom-

mended in the absence of the cosine similarity signal is in

blue. We see that all the additional items recommended by

including cosine similarity were non-popular.

Table 5: Ablation study of the components of eCHOLc on

the ML-20M dataset. While CHOLc alone is not as good as

eCHOL, their combined performance yields the best results.

ML-20M eCHOL CHOLc eCHOLc
Recall@20 0.391 0.382 0.393
Recall@50 0.521 0.517 0.527
NDCG@100 0.420 0.382 0.424

• eCHOL which has shown equivalent performance but faster
training time compared to CHOL,

• CHOLc which is the same as eCHOL except that the input
is the cosine similarity matrix instead of the Gram matrix,

• eCHOLc which combines both eCHOL and CHOLc.

We first observe that the accuracy of eCHOL is the same asCHOL
from Table 2. This is expected as both procedures are equivalent.
Secondly, we see from comparing eCHOL and CHOLc that cosine
similarity by itself does not yield superior performance compared
the to Gram matrix. However, by combining the information from
both the cosine and Gram matrix we can get the best combination
of popular and unpopular items and hence better performance.
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Figure 2: (a) The effect of sparsifying 𝐵 on NDCG@100 and

the recommendation diversity for eCHOLc for the ML-20M

dataset. At 98.5% sparsity theNDCG@100 is at parwithCHOL

after which the diversity and NDCG@100 drop. A zoomed in

version of (a) is shown in (b).

4.5 Making 𝐵 Sparse

The parameter matrix 𝐵 learned by eCHOLc (and other linear auto-
encoders) is full-rank, but they have many entries close to 0. We
can prune these entries smaller (in absolute value) than a threshold
to yield a much sparser parameter matrix 𝐵. This aids in reducing
the memory footprint which is especially useful if the number of
items is large. We explore the robustness of the recommendation
performance as the sparsity level of 𝐵 is increased and plot the
diversity and the NDCG@100 in Figure 2. At 95% sparsity, there is
minimal loss in accuracy or diversity, and at 98.5% the performance
of eCHOLc is effectively the same as that of CHOL. After this
point, 𝐵 becomes too sparse, and valuable signals are lost leading to
decreased accuracy. This is accompanied by an increase in diversity
as random noisy items start to get recommended.

We also observe an interesting phenomenon of diversity increas-
ing at 88%. Upon examination, we found that the new items were
non-popular items with a median frequency of 27 in the training
dataset. It might be the case that these items would have been rel-
evant but since they appear so seldom in the datasets (both train
and test), they don’t impact the accuracy metrics.

5 CONCLUSION

In this paper, we presented an efficient linear auto-encoder and
showed how it can be extended to incorporate cosine similarity to
mitigate the popularity bias that the existing linear auto-encoders
are susceptible to. We argued that this is because existing linear
auto-encoders rely on the Grammatrix which is dominated by large
co-occurrence counts from popular items. We showed that since



Non-popular Items for Accurate & Diverse Linear Auto-Encoding Recommenders ICTIR ’22, July 11–12, 2022, Madrid, Spain

cosine similarity is normalized to be between 0 and 1, it can alleviate
this problem and can increase the diversity of the recommender
by recommending non-popular items. Finally, we showed that this
diversity increase is proportional to an increase in accuracy which
is counterintuitive to the traditional accuracy-diversity trade-off.

REFERENCES

[1] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In 2008 Eighth IEEE international conference on data
mining. Ieee, 263–272.

[2] Farhan Khawar, Leonard Poon, and Nevin L Zhang. 2020. Learning the structure of
auto-encoding recommenders. In Proceedings of TheWeb Conference 2020. 519–529.

[3] Aravindh Krishnamoorthy and Deepak Menon. 2013. Matrix inversion using
Cholesky decomposition. In 2013 signal processing: Algorithms, architectures, ar-
rangements, and applications (SPA). IEEE, 70–72.

[4] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.
Variational autoencoders for collaborative filtering. In Proceedings of the 2018 world
wide web conference. 689–698.

[5] Harald Steck. 2019. Embarrassingly shallow autoencoders for sparse data. In The
World Wide Web Conference. 3251–3257.

[6] Jan Van Balen and Bart Goethals. 2021. High-dimensional sparse embeddings for
collaborative filtering. In Proceedings of the Web Conference 2021. 575–581.


	Abstract
	1 Introduction
	2 Linear Auto-encoders
	2.1 Efficient Implementation
	2.2 Incorporating Cosine Similarity

	3 Experimental Setup
	4 Results & Discussions
	4.1 Running time of eCHOL
	4.2 Performance of eCHOLc
	4.3 Non-popular Items and Accuracy
	4.4 Ablation Study
	4.5 Making B Sparse

	5 Conclusion
	References

