
Springer Nature 2021 LATEX template

1

Title

Hash the Universe: Differentially Private Text
Extraction with Feature Hashing

Author Information

1. Sam Fletcher, corresponding author,
sam@zuva.ai, ORCID 0000-0003-0542-5107

2. Adam Roegiest
3. Alexander K. Hudek

All three authors are affiliated with Zuva, a
company based in Toronto, Canada.

Abstract

Purpose

Using artificial intelligence for text extraction
can often require handling privacy-sensitive text.
To avoid revealing confidential information, data
owners and practitioners can use differential pri-
vacy, a definition of privacy with provable guaran-
tees. In this work, we show how differential privacy
can be applied to feature hashing.

Methods

As a case study, we show how we have imple-
mented our technique in commercial software that
enables users to train text sequence classifiers on
their own documents, and share the classifiers
with other users without leaking training data.
We conduct both a quantitative and qualitative
experiment to measure the impact of the privacy
guarantees on model accuracy.

Results

Results show that even common words can be pro-
tected with (0.06, 10−5)-differential privacy, with
only a 1% average reduction in Recall and no
change in Precision.

Conclusion

The technique enables data owners to privatize
any model that stores the data-dependent weights
in a hash table, and provides protection against
inference attacks on the model output, as well
as against linkage attacks directly on the model’s
hashed features and weights.

Keywords

Differential privacy, natural language processing,
confidentiality, tokens, feature hashing, extraction

Statements and Declarations

Competing Interests: The authors have no
competing interests to declare that are relevant to
the content of this article.

Biographical summary

Sam Fletcher is a Senior
Research Scientist at Zuva, and
was a Research Scientist at
Kira Systems before that. He
holds a Ph.D in Computer Sci-
ence from Charles Sturt Uni-
versity, Australia. His research
interests include decision trees,
differential privacy, and natural
language processing.

Adam Roegiest is the
Vice President of Research &
Technology at Zuva, having
previously been the Director
of Research at Kira Systems.
He holds a Ph.D in Computer
Science from the University of
Waterloo. His primary research
interest is human-in-the-loop
Information Retrieval systems.

Alexander K. Hudek led
Kira Systems’ products, tech-
nology, and research, and is
now on the board of directors
at Zuva. He holds a Ph.D and
M.Math degrees in Computer
Science from the University
of Waterloo. His past research
in the field of bioinformatics
focused on finding similarities
between DNA sequences. He

was heavily involved with the human genome
project.

Springer Nature 2021 LATEX template

Hash the Universe: Differentially Private Text Extraction with

Feature Hashing

Redacted for Review
1*

Abstract

Using artificial intelligence for text extraction can often require handling privacy-sensitive text.
To avoid revealing confidential information, data owners and practitioners can use differen-
tial privacy, a definition of privacy with provable guarantees. In this work, we show how
differential privacy can be applied to feature hashing. Feature hashing is a common tech-
nique for handling out-of-dictionary vocabulary, and for creating a lookup table to find
feature weights in constant time. One of the special qualities of feature hashing is that
all possible features are mapped to a discrete, finite output space. Our proposed tech-
nique takes advantage of this fact, and makes hashed feature sets Rényi-differentially private.
The technique enables data owners to privatize any model that stores the data-dependent weights
in a hash table, and provides protection against inference attacks on the model output, as well as
against linkage attacks directly on the model’s hashed features and weights. As a case study, we
show how we have implemented our technique in commercial software that enables users to train
text sequence classifiers on their own documents, and share the classifiers with other users without
leaking training data. Results show that even common words can be protected with (0.06, 10−5)-
differential privacy, with only a 1% average reduction in Recall and no change in Precision.

Keywords: differential privacy, natural language processing, confidentiality, tokens, feature hashing,
extraction

1 Introduction

The text used to train anything but the largest
language models often contains only a small sam-
ple of the words that could appear in the wild. To
account for unexpected words, various approaches
have been developed, with one approach being
feature hashing [35, 45]. Feature hashing solves
the vocabulary problem by taking all the features
created from text (be they single words or more
complicated features) and hashing them into a
known, predefined hash range. This hash range
acts as the maximum “dictionary size”; no matter
how many unique features are created, they are
all deterministically mapped to an integer within
the allowable range [35, 45].

Each hash acts as the corresponding feature’s
index, like in a real-world dictionary, except the

features are stored in numerical order rather than
alphabetical order. Each hash then points to a
vector of weights that signal the importance or rel-
evance of the underlying feature in the given NLP
(natural language processing) task. The weights
can be learned and updated by a machine learn-
ing algorithm, with the hashes acting as a lookup
table (or “hash table”) for the features. The end
result is a feature set of (hash,weights) pairs.
When the learned model is applied to new data
(usually to classify the data, extract relevant por-
tions, or use as a prompt), the new data is
featurized and hashed in the same deterministic
way, and thus connected to the relevant weights
in the hash table.

The data need not be text – any data that is
being featurized and hashed is applicable – how-
ever for the sake of clarity we frame this paper

Springer Nature 2021 LATEX template

Universe 3

in terms of text. Similarly, while features can be
created from any aspect of the input data, we
will focus the discussion on the most common
piece of sensitive information in a corpus of text:
the words. For any given text, we tokenize (i.e.,
split) it into word segments (including symbols
and numbers), and use those tokens as the build-
ing blocks for any features we might want to use
to train a model.

1.1 Ensuring Confidentiality

When documents contain confidential informa-
tion, a privacy-preserving technique may be
required before the documents can safely be used
for NLP tasks. Unknown or untrustworthy users
might be given access to the NLP model, either
through an open-source or free product, an AI
marketplace [27], or through consumer features
like spell-checkers or auto-complete functionality.

While feature hashing already provides some
amount of obscurity to the raw text, privacy
through obscurity is no privacy at all [3, 41]. In
our scenario, there are two main attack vectors:

• an attacker with access to the raw model and
who knows how the tokens are featurized and
hashed can guess words, hash the corresponding
features, and link them to preexisting hashes in
the hash table; and

• inference attacks on the model’s output are
unaffected by hashing, so an attacker able to use
the model can input arbitrary text and observe
the output any number of times, and build up an
understanding of the underlying training data
and distribution of weights.

In Section 3 we describe our threat model, in
which the attacker has both of the above abilities.

1.2 Motivating Example

To demonstrate how these threats might mani-
fest in real life, we provide a motivating example
using our commercial software. Our software [38]
enables users to upload and organize documents,
collaborate with users within the same organiza-
tion, apply any number of 1200+ built-in sequence
classification models to extract text from their
documents, and annotate and train their own
models using a no-code interface. Some users wish
to share their custom-built models with other
organizations, or with their customers. Before this

can happen, the confidentiality of the underly-
ing documents needs to be ensured. For example,
organizations may have a legal mandate to pro-
tect the confidentiality of its documents, like law
firms in the U.S. do.

As a demonstration, take a real model in our
software that was trained to extract paragraphs
relating to the governing law jurisdiction of
contracts. The trainer has annotated text in their
confidential1 documents such as:

“This Agreement, the legal relations between the
Parties and the adjudication and enforcement
thereof shall be governed by and interpreted and
construed in accordance with the substantive laws
of the State of New York (excepting only those con-
flict of laws provisions which would serve to defeat
the operation of New York substantive law). Any
action arising under or relating to this Agreement
may only be brought, if by Ubiquity in the federal
courts of the United States located in the State of
Connecticut, or if by Client in the federal courts
of the United States located in the State of New
York, and the Parties hereto hereby submit to the
jurisdiction of the said courts.”

If a malicious user got their hands on this
model, they might try to discover confidential
information about the (otherwise anonymous)
trainer by inferring which jurisdictions the trainer
operates in. We simulate an attack this user
could perform by creating 50 frivolous documents
containing a single partial sentence of the form:

“The laws of the State of [MASK].”

where [MASK] is replaced with one of the 50 U.S.
states. Table 1 presents which fragments of text
the model extracts, compared to how many times
the corresponding state appeared in the training
data. Even when the test documents only contain
one incomplete sentence, four out of eight states
that appeared in the training data are extracted,
while only three of the remaining 42 states not in
the training data are extracted.

Table 1 is the result of a single attack, and try-
ing other sentence fragments could narrow down
the states even further. When combined with
other information (such as what industry the
organization operates in) it is clear how knowing
where the organization operates could constitute
a privacy breach.

1In reality the model used for this demonstration is trained
on public documents, to avoid risking the privacy of our users.
No user data is included in this paper.

Springer Nature 2021 LATEX template

Table 1 U.S. States appearing in the training data of a
“Governing Law” model trained in our software, and then
successfully extracted from frivolous sentences.

State
Occurrences in

Extracted
Training Data

Delaware 10 Yes

New York 6 Yes

Texas 4 Yes

New Jersey 1 Yes

New Mexico 0 Yes

New Hampshire 0 Yes

Alabama 0 Yes

Utah 1

California 1

Connecticut 1

Illinois 1

After applying the privatization technique
described in Section 4 to the above model, the
model’s ability to extract relevant paragraphs is
largely unaffected, and none of the 50 sentence
fragments are extracted.

1.3 Our Contribution

We propose a differentially-private method of
training a model on any amount of text, with any
number of labels. We do so by transforming a
hashed feature set into a differentially private ver-
sion of the feature set. We build off preliminary
work presented in [17] and present new theo-
retical results and quantitative and qualitative
experiments.

The proposed technique hides all the words
featurized in the feature set by making them
indistinguishable from all other possible words. It
protects against linkage attacks when the attacker
can see the hashed feature set directly and guess
words, and prevents inference attacks on the out-
put of a machine learning model built using the
feature set. It is computationally efficient, inde-
pendent of any specific hashing function or train-
ing function, and can be “bolted-on” after the fact
to any trained model that uses a hashed feature
set.

The technique also inherits all of the benefits
of differential privacy [10, 11, 13]: it is mathemat-
ically guaranteeable, and immune to any amount
of post-processing or auxiliary information pos-
sessed by a malicious user. Differential privacy

has quickly become the state-of-the-art in privacy
preservation [1, 16, 18, 31]. It defines privacy in
terms of a priori and a posteriori knowledge: the
inclusion of any particular data point in a data set
should not markedly affect what could have been
learned from the data if that data point was not
included.

In order to preserve the confidentiality of each
word when the words are being mapped to hashed
features, our solution requires a novel approach.
Unlike most differential privacy techniques, there
is no aggregation we can employ when it comes to
a hash table. Since they act as indexes in a lookup
table, all hashes are equally “distant” from each
other, and adding “noise” to a hash is the same as
entirely destroying it.

Before presenting our solution to this problem,
we first provide useful background information
in Section 2, and a detailed description of the
threat model we are operating under in Section 3.
We present our technique in Section 4, then walk
through a case study of the technique’s real-world
practicality in Section 5. Limitations and future
work are discussed in Section 6. Related work
can be found in Section 7, and we conclude in
Section 8.

2 Background

This section briefly introduces four building blocks
that will be used to construct our solution in Sec-
ton 4. The first introduces a data structure we
will be using, and the next three cover differential
privacy and its relevant subfields.

2.1 Feature Hashing

Feature hashing is the process of using a hash
function [2] to map features to indexes. It is some-
times referred to as “the hashing trick” [35, 45] due
to how it differs from traditional hashing: instead
of using each hash as a key mapped to some value,
the “trick” is that the hash itself is the value. This
means each hash can act as an index in a table,
and can be looked up in O(1) time. For example, if
each pair of words in a text corpus is treated as a
feature, the feature “New|York” might correspond
to index 3975.

Feature hashing has two main advantages: it is
computationally fast and space-efficient, and more
importantly for our purposes, because the table

Springer Nature 2021 LATEX template

Universe 5

has a specified maximum size, it maps a potentially
infinite number of features into a known, bounded
hash range.

The hashing function is deterministic; a fea-
ture will always be hashed to the same value h.
Hashes cannot easily be reverse-engineered back
to the original feature though – the hashing pro-
cess involves overwriting and shifting the bit string
so many times, that reversing the process leads to
many trillions of possible original features. After
all, every single possible feature in the universe
can be mapped to one of the limited hashes in
the hash range, so “collisions” (where multiple
features map to the same hash) are inevitable if
the feature space is large enough. In practice, the
distribution of training data and features for any
given problem are well-defined and limited enough
that collisions are not common.

Remark 1 When using the hashing trick, the uni-
verse of possible outputs U is finite, and known. For
a particular problem, the output distribution H will
only use a subset of the universe, H ⊆ U , from which
the training data x and testing data z are then drawn
from. For an adequately large x and z drawn from
the same distribution, we know from the Law of Large
Numbers to expect minimal covariate shift; the hash
table H outputted by the featurization process g(x)
is assumed to be close to the hash table outputted by
g(z):

g(x), g(z) −−−−−−−→
|x|,|z|→∞

H

2.2 Differential Privacy

Differential privacy [10] is a quantifiable
definition of privacy that makes strong
guarantees about the risk of a privacy breach. In
the paradigm of differential privacy, the data
holder makes the following promise to each user:

“You will not be affected, adversely or otherwise,
by allowing your data to be used in any study or
analysis, no matter what other studies, data sets,
or information sources are available.” [13]

It has since been adopted as the de facto privacy
standard by companies like Google [1] and Apple
[21], and has been applied to numerous machine
learning algorithms [16, 40]. It has also recently
been adopted by the U.S. Census Bureau, who
used differential privacy for all data releases of the
2020 Census [19].

While other privacy definitions such as k-
anonymity [42] and l-diversity [30] exist, they do
not provide any protection from malicious users
who possess auxiliary information from other
sources, or offer any provable guarantees about the
level of privacy being provided.

For our purposes, rather than protecting the
privacy of individual people, we want to pro-
tect the confidentiality of each term (i.e., unique
word) in the text corpus x. We can then define
differential privacy as follows:

Definition 1 (Differential privacy [10]) An algorithm
f(·) → M∗ is (ϵ, δ)-differentially private if for all
possible outputs in the universe M∗ ⊆ U , for all pos-
sible adjacent corpora x and x′ that differ only by all
occurrences of one term:

Pr(f(x) ∈ M∗) ≤ eϵ × Pr(f(x′) ∈ M∗) + δ (1)

The variable ϵ measures the maximum mul-
tiplicative change in output probabilities, and δ

measures the maximum additive change (often
thought of as the failure rate of the privacy guar-
antee [13]). Note that Definition 1 is symmetrical
for x and x′.

For example, for a value like ϵ ≈ 0.1, the prob-
ability of observing any particular output should
not change by more than 10% when a term in x

is added or removed. In essence, the removal or
addition of a data point should only have a small
chance of affecting a function’s output (interest-
ingly, this is similar to the concept of over-fitting,
and has been formally explored in [14]). δ is often
set to 10−5, for a 1-in-100,000 chance of failure [1].

Our goal is to design an algorithm f(M) →
M∗ that is (ϵ, δ)-differentially private. What f and
M look like is up to us, but for now M can be
thought of as a trained model, and f as a custom
privatization function that modifies the model.

2.3 Rényi Differential Privacy

Rényi differential privacy (RDP) [33] reframes dif-
ferential privacy (DP) in terms of the Rényi diver-
gence between two distributions, while remaining
compatible with Definition 1. Compared to using
Kullback–Leibler divergence to measure differen-
tial privacy [43], RDP better models the δ privacy
risk, and provides an α variable that allows for a
smooth trade-off between ϵ and δ. Framed in terms
of text corpora, RDP is defined as follows:

Springer Nature 2021 LATEX template

Definition 2 (Rényi differential privacy [33]) An
algorithm f(·) → M∗ is (α, ϵ)-Rényi differentially pri-
vate if for all possible outputs in the universe M∗ ⊆ U ,
for all possible adjacent corpora x and x′ that differ
only by all occurrences of one term:

Dα(f(x)∥f(x
′)) ≤ ϵ (2)

where Dα is the Rényi divergence of order α > 1
between two probability distributions P and Q defined
over R:

Dα(P∥Q) ≜
1

α− 1
lnEz∼Q

(

P (z)

Q(z)

)α

(3)

It was also shown in [33] that we can con-
vert (α, ϵ)-RDP into traditional (ϵ, δ)-DP in the
following way:

Lemma 1 (Converting RDP to DP [33]) If f(·) obeys
(α, ϵ)-RDP, then f(·) obeys (ϵ′, δ)-DP for all 0 < δ <
1, where ϵ′ = ϵ+ ln(1/δ)/(α− 1).

2.4 User-Level Privacy as

Term-Level Privacy

Differential privacy traditionally compares two
“neighboring” data sets x and x′ that differ by a
single data point, such that |x| − |x′| = 1. This
treats each data point as independent. User-level
privacy is a variation that takes into account that
the same “user” may appear in x multiple times,
and that we want to totally hide the presence of
the user, rather than just one of their data points
[13]. Two data sets are said to be “adjacent” to
one another if they differ by all occurrences of a
single user, such that |x| − |x′| = k, k ≥ 1.

This definition of adjacency matches our sce-
nario, in which we want to hide the presence
or absence of all occurrences of each term (i.e.,
unique word). Since the concept of a “user” is an
ill fit for our application, we instead call it term-
level privacy. Additionally, since multiple features
can be created for each of the k occurrences of a
term, we define two data sets as being adjacent
if they differ by all K features associated with a
given term, |x| − |x′| = K, K ≥ k.

Three previous works have explored providing
actual user-level differential privacy against text-
based linkage attacks [32, 44, 47], also known as
authorship attribution attacks. At first glance this
may sound similar to our work here, however there

is key difference: these works focus on protect-
ing the privacy of the people providing the text,
rather than protecting the confidentiality of the
text itself.

3 The Threat Model

In our threat model, the data owner has some
machine learning modelM they wish to make pub-
lic, while leaking as little information about the
data x used to train the model as possible. Model
M is made up of:

• a data-dependent feature set F of hashed fea-
tures H and weights Θ, and

• data-independent logic (i.e., functions, algo-
rithms, or architecture) L that manipulates the
feature set.

Θ can be thought of as a weight matrix, where
the index of each row (i.e., vector) is equal to a
hash h in H, and each column is a random vari-
able Xi. For clarity we describe the values in Θ
as “weights” as a catch-all term for any data-
dependent random variables, both continuous and
discrete.

A malicious user (or “attacker”) may wish to
uncover some number of original features gen-
erated from the training data. The attacker is
assumed to have unlimited computing power at
their disposal, and any amount of auxiliary infor-
mation about the data, either now or in the
future. Auxiliary information can include sec-
ondary sources of information such as other data
repositories, information gathered via social engi-
neering, and estimates based on real-world knowl-
edge or personal experience. Any information that
is learned about the data x from a source other
than x is considered auxiliary information.

The attacker is assumed to be able to repro-
duce the featurization of the data and the hash-
ing of the features (i.e., g(x)). They also know
how privacy is added to the outputted feature
set (presented in Section 4), but do not know
any cryptographically-secure randomly generated
numbers used when adding privacy. Note that the
attacker does not possess the source code that
generated the data-independent logic L, such as
the training algorithm. We explore the additional
attack vector opened up by this possibility in
Section 6.3.

Springer Nature 2021 LATEX template

Universe 7

To model the worst-case scenario, differential
privacy assumes the attacker already has knowl-
edge of all the data found in x except for one data
point, and by gaining access to x, hope to discover
that one data point. For example, only a single
term in the training documents may be unknown
to the attacker.

Remark 2 In the scenario described, we can imagine
that the attacker has gained a copy of some document
from a source outside of x, but with one term redacted.
Seeing the context surrounding the redacted word
may give them some clues as to what the redacted
term is. Fortunately, the definition of differential pri-
vacy already incorporates these sorts of linkage or
correlation attacks, as part of the attacker’s a priori
knowledge. Note that this scenario differs from, say,
redaction, in which all non-redacted terms are directly
leaked via access to x (that is, no a priori knowledge
is required).

Our goal is to prevent the attacker from
increasing their confidence about the identity of
any data point. More explicitly, we want to hide
the identity of the features, to prevent the attacker
from discovering the raw data used to make those
features. Note that the weights associated with
the features are not sensitive in their own right
– they are only sensitive insofar as they relate to
the features. If the features are unidentifiable, any
associated weights are meaningless. For example,
it doesn’t matter if the attacker knows that hash
3975 has weights {0.55, 0.14} if they have no way
of knowing what feature generated the hash.

Rather than perturbing the internal mecha-
nisms of some machine learning algorithm m, we
instead perturb the feature set F in the out-
putted model M = {L, F}. This approach is
known as output perturbation [13], and allows our
solution to be “bolted-on” [46] to a variety of
models, rather than being closely tied to models
trained by particular algorithms. Any algorithm
that builds a model from hashable features is
applicable, such as Conditional Random Fields
(CRF’s), Hidden Markov Models (HMM’s), and

Support Vector Machines (SVM’s).2 Implementa-
tions of feature hashing can be found in software
packages such as Tensorflow, sci-kit learn, Apache
Mahout, R, Gensim, sofia-ml, Apache Spark, and
Vowpal Wabbit.

Our threat model assumes that the attacker
has unlimited time and access to the whole model,
and so is a non-interactive setting [13]. This
includes not just access to the input and output
(such as via an API), but also to the internals of
the model itself. We therefore need to not only
protect against inference attacks, such as infer-
ring the presence of a data point based on what
the model outputs when given arbitrarily spe-
cific inputs, but also against table linkage attacks,
where the attacker can view the hashes and
weights directly and attempt to reverse-engineer
the features [18].

The concrete version of our problem setting,
as it relates to textual data, is as follows. Some
function g(x) transforms a corpus of documents
x into features that are hashed and stored in a
hash table H ⊂ N. Each hash h ∈ H is an integer
between 1 and a finite number R, such as 106.

A machine learning algorithm m(x,H) is then
trained on x, using H as the lookup table for stor-
ing and updating the learned weights, producing
some model M = {L, F}. The algorithm m might
use information such as the frequency and order-
ing of the features found in x during training, but
this information is not stored in M – the only
data-dependent information in M is encoded in
the feature set F . As far as privacy-preservation
is concerned, we can ignore any data-independent
framework or logic L.

Each element in F is a tuple mapping hashes
h to weights θh, F = {(h, θh); ∀h ∈ H}, where
each θ = {wi; ∀i, 0 < i ≤ d}, and each wi is a
realized random variate from some random vari-
able Xi among d random variables. We also use
a second construction that isolates the θ vectors:
weight matrix Θ = {θh; ∀h ∈ H}, thus allowing
us to write the feature set as F = {H,Θ}.

2For differentially private deep learning models, we refer
the reader to [1]. While popular, deep learning techniques
require significantly more time and compute power, often cost-
ing 10,000 times more dollars (and CO2 emissions) to train
than an equivalent CRF [9]. In our own internal testing, we
have not found it to offer substantial utility improvements in
our domain to merit the increased monetary, infrastructure,
and environmental costs.

Springer Nature 2021 LATEX template

x Hg(x) M M*

Featurization
& Hashing

m(x, H)

Text
Corpus

Trust
Boundary

Hash
Table

Learning
Algorithm Model Differential

Privacy
Public
Model

f(H) f(ϴ)

Fig. 1 The process of training a model on a data set of text, then applying differential privacy on the two data-dependent
components of the model (the hash table H and weight matrix Θ) to create a version of the model that preserves the privacy
of all of the terms in the text.

Table 2 A toy example of three features being hashed by g(x), and then assigned up to two weights by m(x, g(x)).

Raw Text Example Feature Hash

Weights

before privacy

(2-gram) X1 X2

New York New|Y ork 3975 0.55 0.14

Google Inc. Google|Inc. 3977 0.72

lung cancer lung|cancer 3980 -0.91 0.28

Some toy examples of hash tuples are included
in Table 2. Note that to increase generality, we do
not require every hash to have a realized value wi

for every possible Xi.
There is no correlation between small changes

in a feature and the resulting hash; the hashes are
approximately uniformly randomly distributed.
Given that g(x) = H is also a product of x, we
simplify m(x,H) to m(x) when context allows.
See Fig. 1 for a diagram of the training and pri-
vatization process (the details of the privatization
function f are described in Section 4).

We can treat both g and m as black boxes
for our purposes; how featurization and learning
occurs does not affect our method. Our solution
remains the same regardless of whether the hashes
are created from individual words, n-grams of
words [22], or in conjunction with other informa-
tion like font or layout. Each word can be part
of multiple hashes without affecting our approach,
and the causal relationship between a word and
multiple features is taken into account.

The attacker is assumed to have arbitrary
computational power at their disposal, and an
arbitrary amount of auxiliary information. For
example, the attacker can have all the words in
all the documents in the corpus x, except with all
occurrences of one term redacted. Even in that
scenario, our solution protects the confidentiality
of the redacted term. Other possible risks are:

• The attacker knows the featurization and hash-
ing algorithm g that was used, allowing them
to guess features and check if the corresponding
hash appears in the hash table.

• The attacker has a template of the document
that was hashed, with all the text filled in except
for the spaces left for personalized information.

• The attacker has the resulting model M , and
can freely input specially crafted text and
observe how M ’s output changes, iterating as
many times as they wish to see which words
trigger stronger responses from M .

Our solution, presented in Section 4, protects
against all these risks.

4 Term-Level Differential
Privacy

Unlike most differential privacy techniques, there
is no aggregation we can employ when it comes
to a hash table H – all hashes are equally “dis-
tant” from each other, and adding “noise” to a
hash equates to entirely destroying it. The solution
needs to account for the fact that if the attacker
has our hashing function, they can guess words
to hash and look for them in the hash table. Our
solution needs to release a hash table contain-
ing legitimate hashes, while simultaneously not

Springer Nature 2021 LATEX template

Universe 9

allowing an attacker to detect which hashes are
legitimate.

At a high level, we do this by hashing the entire
universe. We fill in the (finite) hash table, caus-
ing legitimate hashes to become indistinguishable
from the synthetically-generated hashes. Any fea-
ture that could possibly exist will have the same
hash as countless other features, and will be given
weights from the same distribution as every other
feature, meaning that the model will act as if it
saw every possible term in the training data. As
long as Remark 1 holds and enough hashes corre-
spond to the same features in new documents as
they did in the training documents, the model’s
utility can remain largely unaffected.

Rather than perturbing x or a particular
machine learning algorithm, our anonymization
process f(M) → M∗ uses output perturbation,
modifying M after it is outputted by m(x,H) but
before it is publicly released.

Recall that M = {L, F} and that only the
feature set F is data-dependent (and thus in
need of privacy preservation). We break up F

and its private version F ∗ into two components:
F = {H,Θ} and F ∗ = {H∗,Θ∗} (or alterna-
tively, F ∗ = {(h∗, θ∗h); ∀h∗ ∈ H∗}). Similarly for
the privacy function f , we can break it up into
f(H) → H∗, and f(Θ) → Θ∗. We can then recom-
bine the privatized hash table and weight matrix
to make M∗ = {L, F ∗}. Only M∗ is ever made
available to the public.

Fig. 1 provides a flowchart of the process. We
present our strategy for f(H) and f(Θ) separately,
and prove that these parts are (0, 0)-differentially
private and (ϵ, δ)-differentially private respectively
in Sections 4.1 and 4.2 below.

4.1 Anonymizing the Hash Table

While trivial to prove, we include the following
claim for completeness.

Claim 1 (Anonymizing H) From all possible hash
values 1 to R, we note the hashes that do not appear
in H. The function f(H) “fills in” the noted missing
hashes to produce H∗, such that H∗ = {1, 2, . . . , R}
and |H∗| = R. The resulting hash table H∗ is (ϵ, δ)-
differentially private, with ϵ = 0, δ = 0.

Proof Observing that H is the output of g(x), we can
consider two adjacent corpora x and x′ as in Defini-
tion 1. Function f(H) always outputs H∗, no matter
what x is. Thus Pr(f(g(x)) = H∗) = 100% for all
possible x. Using Equation 1, we trivially have:

Pr(f(g(x)) = H∗) = Pr(f(g(x′)) = H∗)

Pr(f(g(x)) = H∗) ≤ eϵ × Pr(f(g(x′)) = H∗) + δ

eϵ = 1, δ = 0

ϵ = 0, δ = 0

□

Remark 3 Not only does f(H) = H∗ hide which
hashes were originally in H, but it also hides the origi-
nal size of H. This prevents the attacker from knowing
how many features were created from x, and also hides
the collision rate of hashes in H. There is no way for
the attacker to learn how many words in x were likely
mapped to the same hash by only observing H∗.

4.2 Anonymizing the Weight Matrix

To anonymize Θ we need to ensure each and every
hash has a full set of plausible weights. To be
“plausible”, the weights need to follow the dis-
tribution observed in Θ, making the synthetic
and genuine hashes indistinguishable from each
other. The weights themselves are meaningless to
an attacker without the ability to identify the
hashed features they are associated with, and so
do not need privacy protection in and of them-
selves. To use an earlier example, it doesn’t matter
if the attacker knows that hash 3975 has weights
{0.55, 0.14} if they have no way of knowing what
feature generated the hash.

Making synthetic and genuine hashes indistin-
guishable from each other includes filling in any
gaps in the θ vectors corresponding to preexisting
hashes h ∈ H. Depending on the machine learning
algorithm m used, it may or may not be possible
for some hashes to be missing some elements of θ.
For example in a classification algorithm, weights
might only exist for class labels the associated
feature was observed to have.

To make the hashes indistinguishable, we gen-
erate synthetic weights from the same distribution
as the genuine weights. Our privatization function
f(Θ) first fits a d-dimensional mixture distribution
X = {X1, . . . , Xd} to the realized random variates
in Θ̂ ⊆ Θ, where Θ̂ contains only θ vectors with

Springer Nature 2021 LATEX template

Table 3 A toy segment of a filled-in feature set outputted
by f(Θ), containing the example features shown in Table 2.

Before Privacy After Privacy

H X1 X2 H∗ X1 X2

. . .

3975 0.55 0.14 3975 0.55 0.14

3976 0.61 0.12

3977 0.72 3977 0.08 0.72

3978 0.05 0.83

3979 -0.33 0.49

3980 -0.91 0.28 3980 -0.91 0.28

. . .

no missing elements. We can also write this distri-
bution as D(Θ̂). Each weight wi ∈ θ ∈ Θ can be
considered to be drawn from the random variable
Xi, for each i = 1, . . . , d.

For each of the synthetic hashes h∗ (i.e., the
hashes that are not in H), f(Θ) then generates
weights for all possible d elements in θh∗ by sam-
pling from X. For preexisting hashes h, f(Θ)
only generates weights from Xi for any unrealized
weights wi, conditioned on the preexisting weights
in θh. This can be done with Cholesky decompo-
sition [24] or a similar appropriate technique.

Both continuous and discrete random variables
can be used, as well as any appropriate fitting
function. If the distributions of the d random
variables in Θ are non-parametric, f(Θ) can use
Kernel Density Estimation (KDE) [24] or a simi-
lar technique to perform the fit. See [4] for a recent
example of using KDE for a similar purpose. Oth-
erwise parametric fitting functions can be used.
The better the fit is to the distribution produced
by m(x,H), the less erratically the distribution
may change when weights are added or removed
in neighbouring distributions, and the lower the
privacy cost will be.

Table 3 shows a toy segment of a filled-in
feature set outputted of f(Θ), continuing the
example from Table 2. We provide a case study
in Section 5 where we fit a multivariate mixture
of Gaussian distributions to Θ, and use Cholesky
decomposition [24] to generate new θ∗h vectors and
new conditional random variates w ∈ θh.

4.3 Measuring the Privacy Cost

Now that f(Θ) is defined, we can measure its
privacy cost using Rényi differential privacy:

Claim 2 (Anonymizing Θ) Using the variables and
processes described in Section 4.2, for any given term
appearing in up to K features in H, function f(Θ) is
(α, ϵ)-Rényi differentially private (defined by Defini-
tion 2) for all possible adjacent Θ̂ and Θ̂′ that differ
by K features:

Dα(D(Θ̂)∥D(Θ̂′)) ≤ ϵ , s.t. |Θ̂| − |Θ̂′| = K (4)

Additionally, f(Θ) is (ϵ′, δ)-differentially private,
where ϵ′ = ϵ+ln(1/δ)/(α−1) for any given α > 1 and
0 < δ < 1.

Proof The calculation of ϵ and ϵ′ is a direct application
of Definition 2 and Lemma 1 respectively, using the
concept of adjacent data sets described in Section 2.4.
The probability distribution D(Θ̂) used in f(Θ) is
defined by the subset Θ̂ ⊆ Θ described in Section 4.2,
and we assume the worst-case scenario where all K
features are present in Θ̂. □

All vectors produced by f(Θ) are fitted to or
generated by the distribution D(Θ̂). The output
of f(Θ) is always a weight matrix Θ∗ of length R

with no missing vectors θh∗ , ∀h∗ ∈ H∗, and no
missing weights w ∈ θh∗ . For any given adjacent
weight matrix Θ′ known to the attacker, the only
available attack vector to detect one or more of the
K unknown genuine hashes is to detect θ’s in Θ∗

that diverge from the expected distribution D(Θ̂′),
either by guessing features and hashing them or by
inferring the features by how the model behaves on
different inputs. Note that Rényi divergence also
captures the effect of any outliers in the tails of
the distributions, so features with unusual weights
are accounted for in the privacy cost.

Note that the privacy cost ϵ is defined descrip-
tively, not prescriptively. The data owner lacks
the ability to specify ϵ, and instead must mea-
sure the cost after-the-fact and decide whether
to accept the cost or modify x, g(x) or m(x,H)
and try again. This is similar to Dwork’s Propose-
Test-Release framework [12], except that rather
than external users querying the model interac-
tively and consuming part of the privacy budget
for each test, the data owner can test different
configurations for no cost.

Springer Nature 2021 LATEX template

Universe 11

Remark 4 K is different for different terms. This can
move adjacent distributions closer or further away, and
the privacy cost ϵ will likely be higher for more fre-
quent words, where K is large. Similarly, rarer words
are more protected.

Remark 4 enables the data owner to calculate
the privacy cost for specific terms if they want.
This also allows for the acceptable privacy cost
of extremely common terms and punctuation like
“the” and “.” to be higher than the acceptable
cost of rarer terms. Also note that the cost of any
given term is being calculated independently of
the rest of x, so Parallel Composition [13] applies
– the costs of each term do not add up.

The effectiveness of Claim 2 in practice
depends on whether reasonable ϵ values can be
achieved, and how heavily the performance of the
model is affected by anonymization. We empiri-
cally demonstrate what privacy costs and perfor-
mance drops can be expected in Section 5, but
first we offer some insight into why we can expect
performance to remain largely unaffected.

4.4 Model Utility

Remark 1 described how, when we expect the
training data and any future data to be drawn
from the same distribution, we can infer that the
the output distribution H will also converge to the
same subset of the universe of all hashes in range
R. This means that we can expect it to be rare
for future data to produce hashes not seen during
training.

The genuine hashes h ∈ H (and associated
weights w ∈ θh) remain untouched by f(H) and
f(Θ). Only hashes and unrealized weights that
were not part of the training data are affected,
and these elements are by definition outside of
H. When the same h’s are seen again in future
data, they are correctly assigned the unperturbed
weights contained in θh. Any weights in θh that
were generated by f(Θ) will also be assigned, but
are expected to have little impact, as they were not
seen during training. The rarity of observing new
hashes outside the training distribution means
that the addition of the fake hashes h∗ does not
overly distort the predictions of the anonymized
model M∗. We therefore expect model utility to
remain high after making the feature set differen-
tially private.

Of course, the sampling assumption of
Remark 1 weakens as the training size decreases;
a small sample x̂ may not converge to E[x] as well
as a larger x̂ would.

4.5 Updating the Anonymized

Model

Sometimes a data owner may wish to update a
model M∗ with a new batch of training data
and/or more learning. So far we have only consid-
ered a single model, which we can write as Mb=1.
In order to anonymize models after the first,Mb>1,
we propose two changes to f(Θb>1):

• Θ̂b ⊆ Θb is defined as all the θ vectors that are
present in the new training data or otherwise
affected by the update.

• The update amounts (i.e., the element-wise dif-
ferences between Θb−1 and Θb) are considered
as additional dimensions in the multivariate
distribution X fitted to Θ̂b, for a total of 2d
dimensions.

Then f(Θb) can sample updates for each θ that
was not updated by the new training round mb,
maintaining any correlations defined by X. The
sampled update amounts are then added to Θb’s
weights.

Claim 3 (Anonymizing Mb>1) Anonymizing Mb

when b > 1 does not require performing f(Hb). f(Θb)
is still required in order to anonymize all θ’s that were
not updated by mb. For every b > 1, Θ̂b is the set
of θ vectors that were updated by mb. Assuming that
the same g, m and α from b = 1 are used, and that
an attacker could have access to all previous models

1 ≤ i < b, f(Θ∗
b) is

(

α,
∑b

i=1 ϵi

)

-RDP. It then follows

that f(Θ∗
b) is (ϵ′, δ)-DP, where

ϵ′ =
ln(1/δ)

(α− 1)
+

b
∑

i=1

ϵi.

Proof The function f(Hb>1) is not necessary because
all hash values have already been filled in:Hb>1 = H∗

1 .
The proof for f(Θb>1) follows the same process as
the proof for Claim 2, since Claim 2 holds for any
number of dimensions d. We can use the composition
rule described by Proposition 1 in [33] to include the
cost of the previous iterations, f(Θi); 1 ≤ i < b.

□

Springer Nature 2021 LATEX template

Since any given term can appear in multiple
updates, the cost of an attacker looking for the
term needs to be paid each time. Based on the
amount of risk that is considered acceptable, a
cap on ϵ will limit b. Once the limit is reached,
updates can be prevented in order to avoid exceed-
ing the acceptable risk threshold. Fortunately, one
of the benefits of RDP is that any applications
of f(Θb>1) do not increase δ when converting to
(ϵ′, δ)-DP, and is only added to ϵ′ once.

5 Case Study

The privacy solution described in this paper is
used in our commercial software, as part of a
model-sharing feature where organizations can
securely share their custom-built models with out-
side organizations. Leading up to the release of the
feature we conducted two types of experiments,
comparing the private models to their original,
non-private counterparts. The first was a quanti-
tative experiment, measuring the privacy cost and
accuracy loss of 20 models after our privacy solu-
tion had been applied. We present our quantitative
findings below in Sections 5.1.

The second experiment was conducted by our
in-house team of domain experts (lawyers), who
qualitatively inspected 26 private models on 1200
documents to see if there is any noticeable differ-
ence in the length and types of extractions made.
An assessment of 8,182 extractions found only six
noticeable changes after applying privacy. Further
details can be found in Appendix B.

The documents used in our models come from
the EDGAR database [6]. While these documents
are public, similar agreements in the real world
could easily contain highly sensitive information.
For each model (described in Appendix A), in-
house lawyers annotated relevant text segments
in various types of contracts. The annotations,
making up between 0.2% and 5.5% of the corpus
for the model, are labeled as “relevant”, and the
remaining text are labeled as “not relevant”.

Each hash tuple (h, θ) has two elements in θ,
corresponding to one weight per label. Therefore
the dimensionality of the fitted distribution X for
f(Θ) is d = 2. Each θh only contains a weight for
labels that m(x,H) observed the corresponding h

having in x.
We train Conditional Random Field models

[28] using the Passive Aggressive algorithm [7] in

the CRFSuite software [36] to find the relevant
text. We use MurmurHash3 [2] to perform the fea-
ture hashing, with a hash range of R = 221 ≈
2× 106.

To featurize the text, we use the punkt algo-
rithm [26]. Our features include two that are
created for each term (a uni-gram and a word
vector clustering feature) and up to 10 features
created from each occurrence of a term (bi-grams
and 4-2-skip-grams [22]).

We find that the weights learned by the
Passive-Aggressive algorithm are approximately
normally distributed, and there is a high inverse
correlation between the weights of the “relevant”
and “not relevant” class labels. This means we can
use a mixture of univariate Gaussian distributions,
though not a multivariate Gaussian distribution.
We use the closed-form equation found in [20] to
calculate the Rényi divergence for each univariate
Gaussian. The most divergent adjacent distribu-
tion for each dimension is created by removing
the K data points furthest from the mean. The
Rényi divergence to the adjacent distribution in
each dimension are summed together to form the
final privacy cost ϵ.

5.1 Quantitative Assessment

In this case study we focus on 20 models trained on
various collections of credit, loan and lease agree-
ments. We provide descriptions and statistics of
the 20 models in Appendix A. To assess the per-
formance of the models we train on 80% of the
documents and test on the remaining 20%. We use
Recall, Precision and F1 scores [37], given the high
label imbalance.

Table 4 presents the performance of the origi-
nal, non-private models compared to their private
counterparts. The cost ϵ′ of privatizing each model
when δ = 10−5 is listed in the final column. On
average, there is no loss in Precision or F1 scores
[37], and only a .01 reduction in Recall. In six
cases, F1 scores actually increase by .01 − .02
points. These improvements in performance are
likely due to the model benefiting from the reg-
ularizing effect of differential privacy [14]. Aside
from Model (r) (which did not achieve high accu-
racy even without privacy being added), the F1

scores reduce by .01−.02 points in five cases. Inter-
estingly, Model (r), the worst-performing model,

Springer Nature 2021 LATEX template

Universe 13

Table 4 The Precision, Recall, and F1 scores of 20 (ϵ′, δ)-differentially private models, compared to their original
non-private versions. The privacy cost ϵ′ of the 100th most common word in each corpus when δ = 10−5 is also reported.

Model
Original Model Private Model

ϵ′
Precision Recall F1 Precision Recall F1

a) 1.00 0.83 0.91 1.00 0.83 0.91 0.048

b) 1.00 0.86 0.92 1.00 0.86 0.92 0.034

c) 0.88 0.90 0.89 0.90 0.90 0.90 0.063

d) 0.95 0.95 0.95 0.96 0.95 0.96 0.076

e) 0.70 0.95 0.80 0.70 0.95 0.80 0.057

f) 0.72 0.97 0.83 0.74 0.97 0.84 0.066

g) 0.91 0.91 0.91 0.91 0.89 0.90 0.086

h) 0.72 0.95 0.82 0.74 0.95 0.83 0.143

i) 0.92 0.87 0.89 0.93 0.84 0.88 0.100

j) 0.81 0.93 0.87 0.82 0.92 0.87 0.092

k) 0.86 0.84 0.85 0.86 0.84 0.85 0.051

l) 0.96 0.89 0.93 0.93 0.89 0.91 0.056

m) 0.92 0.85 0.88 0.92 0.85 0.88 0.080

n) 0.97 0.93 0.95 0.97 0.93 0.95 0.032

o) 0.93 0.69 0.79 0.96 0.69 0.81 0.048

p) 0.92 0.94 0.93 0.89 0.94 0.92 0.038

q) 0.97 0.77 0.86 0.97 0.74 0.84 0.076

r) 0.48 0.69 0.56 0.39 0.56 0.46 0.031

s) 0.94 1.00 0.97 0.94 1.00 0.97 0.042

t) 0.95 1.00 0.98 0.98 1.00 0.99 0.049

Average 0.88 0.89 0.87 0.88 0.88 0.87 0.063

experiences a .10 reduction in F1 score, suggest-
ing that problems with poorly-fitting weights are
exacerbated when filling in the rest of the hash
table with that same distribution of weights.

As noted in Remark 4, K can be calculated
separately for any given term when calculating the
privacy cost. Fig. 2 shows the privacy cost ϵ′ of
terms that appear in different percentages of the
total number of features when δ = 10−5. Zipf’s
Law [48] gives us an approximation for the rel-
evant frequency of common terms. For example,
“the” is the most common term, and appears in
approximately 7% of all features. Zipf’s Law tells
us that less frequent terms appear inversely pro-
portionally to their frequency rank, so for example
the 100th most common term appears in K ≈
0.07% features. Sensitive words, such as company
names, are likely to be far less common than this,
and we can see in Fig. 2 that the privacy cost of
the 1000th most common word is ϵ′ = 0.016.

Dwork, the creator of differential privacy, has
recommended that the privacy cost remain at or
below 0.1 [11], however state-of-the-art machine
learning algorithms often go as high as ϵ = 1
[16], ϵ = 2, 4, 8 [1] or even ϵ = 8.6 [31]. We
find it promising that our technique can provide
guarantees as strong as (0.063, 10−5)-differential
privacy for even reasonably common terms, with
only minor degradation in model performance.

6 Limitations and Future
Work

This work represents the first attempt at using
differential privacy to hide the hashes present
in a hash table. This scenario exists in stark
contrast to more traditional applications of differ-
ential privacy, where noise is added to data such as
counts, linear queries, and summary information.

Springer Nature 2021 LATEX template

K=7% K=0.7% K=0.07% K=0.007%
Average 0.578 0.213 0.063 0.016
Large 0.572 0.220 0.068 0.018
Small 0.590 0.213 0.063 0.016

Total Correlation -0.03 0.18 0.24 0.35
Unique Correlation -0.08 0.15 0.25 0.31

Total Words Unique Words Unique/Total Ratio Correlation 0.06 0.01 0.04 -0.10
8 0.053 0.0066 7% 0.7% 0.07% 0.007%
20 0.108 0.0054 1086 0.659 0.216 0.048 0.010
24 0.135 0.0056 1238 0.570 0.144 0.034 0.007
30 0.14 0.0047 1239 0.545 0.232 0.063 0.013
24 0.134 0.0056 1240 0.683 0.257 0.076 0.022
19 0.12 0.0063 1242 0.567 0.207 0.057 0.012
18 0.118 0.0066 1243 0.587 0.231 0.066 0.010
28 0.14 0.0050 1244 0.655 0.258 0.086 0.021
20 0.12 0.0060 1245 0.733 0.342 0.143 0.057
28 0.15 0.0054 1262 0.682 0.281 0.100 0.029
20 0.071 0.0036 1300 0.636 0.273 0.092 0.028
15 0.083 0.0055 1444 0.575 0.206 0.051 0.011
14 0.098 0.0070 1460 0.534 0.192 0.056 0.014
20 0.122 0.0061 1500 0.671 0.228 0.080 0.021
20 0.122 0.0061 1509 0.368 0.125 0.032 0.010
21 0.128 0.0061 1512 0.560 0.185 0.048 0.010
9 0.061 0.0068 1520 0.491 0.167 0.038 0.009
24 0.124 0.0052 1524 0.618 0.244 0.076 0.015
17 0.084 0.0049 1551 0.517 0.151 0.031 0.005
25 0.142 0.0057 1601 0.504 0.173 0.042 0.010

1611 0.409 0.154 0.049 0.012
Average 0.578 0.213 0.063 0.016

Fig. 2 The privacy cost ϵ′ of terms at four different frequencies. The thick green line shows the mean of the privacy costs
for the 20 models (grey lines) described in Appendix A. The first and third frequencies are labeled “the” and “day” as
examples of terms that occur at approximately that frequency. The privacy costs for all models when K = 0.07% can be
found in Table 4.

Given this novelty, we believe there are multiple
areas where improvements to our technique can
be explored. At the highest level, there are likely
many more applications where our key observa-
tion – that finite output spaces can be filled in
– can lead to differentially private solutions. For
this initial work, we list several specific areas that
could likely be improved.

6.1 Efficiently Measuring the

Privacy Cost

When fitting Θ̂ to a distribution X, it may not be
feasible to use a multivariate parametric distribu-
tion, such as a Gaussian distribution. While tech-
niques such as KDE are still likely suitable [4], the
resulting distribution will lack a closed-form solu-
tion for measuring the Rényi divergence to adja-
cent distributions, such as the solutions described
in [20]. If this is the case, unless the features asso-
ciated with each word are explicitly known, it may
be necessary to brute-force build every adjacent
distribution to find the one furthest from X. For
K features, this may require

(

|Θ̂|
K

)

distributions,

with a complexity of O
(

min
(

|Θ̂|K , |Θ̂||Θ̂|−K
))

excluding the complexity of fitting each of those
non-parametric distributions.

If each random variable Xi behaves paramet-
rically in isolation, one alternative is to fit each
one to univariate parametric distributions sepa-
rately, with the resulting multivariate distribution
being a mixture distribution. In this scenario, we
can measure the closed-form Rényi divergence [20]
of each distribution separately, and then add up
the respective privacy costs. This gives a naive
upper bound on the privacy cost – it is likely that
tighter bounds exist, especially if one realized ran-
dom variate can be used to derive the remaining
random variables.

6.2 Computational Complexity and

Storage Requirements

The computational complexity of f(H) is trivially
O(1), while f(Θ)’s complexity largely depends
on whether non-parametric fitting techniques like
KDE are required. Fortunately, even in the case
of non-parametric techniques, f(Θ) scales with Θ̂
and not x, making it likely substantially faster
than the training process m(x). This is ideal given
the bolt-on nature of our proposed technique,
where it is applied once to a previously-trained
model. Additionally, due to the nature of feature
hashing, using H∗ on new data remains at O(1)
as H∗ is still a lookup table.

Springer Nature 2021 LATEX template

Universe 15

The trade-off is that the storage requirements
of M∗ are likely much larger than M ’s. This is
due to both the hash range H and the weights
w ∈ θ ∈ Θ being completely “filled in”, for
a total of R × (d + 1) data points. One upside
is that the storage requirements are more pre-
dictable and consistent, but depending on the size
of R and d, it is possible for orders of magni-
tude more storage space to be required. Perhaps
future work can find a way to reduce this (beyond
using problem-agnostic compression techniques),
but high storage requirements may simply be the
cost for having differentially private feature sets.
There is no such thing as a free lunch, after all
[25].

6.3 Changing the Threat Model

No matter what the scenario, the privacy guaran-
tees depend on the threat model – the abilities and
limitations the attacker is assumed to have. Here
we consider two variations on the threat model we
presented in Section 3.

6.3.1 A lateral change

In the base threat model, we limited the scope to
a single model M being shared, but assumed that
M could be “cracked open” and the hash table
could be directly observed. We can flip these cri-
teria, and instead imagine the attacker’s access to
M being strictly controlled by an API (where they
can only change the inputs and observe the out-
puts), but can create their own models M ′ using
the same training algorithm. For example in an AI
marketplace, the attacker might have the ability to
create their own models, either to share or for their
own (perhaps nefarious) purposes. If the attacker
possesses all of the training data used to train M

except for one term, they would have the ability to
train their own version of the same model, using a
placeholder term for the missing term. This would
give them a model with the exact same distri-
bution of weights as M . Fortunately, this is the
same as what they could achieve by querying the
original model an unbounded number of times;
learning how the distribution of M differs from an
adjacent model M ′. This is exactly what Claim 2
is measuring, and so the same privacy guarantees
apply.

6.3.2 A stronger attacker

Things change if the attacker has both the ability
to train new models and see the hash tables of
each model directly. In this scenario, the attacker
can directly observe the weights associated with
the placeholder term, and know that those weights
are identical to the weights of the unknown term
in M . Preventing this threat is difficult to make
tractable guarantees about, and would be a good
direction for future work.

One possibility is to make the training pro-
cess m non-deterministic in a way that can result
in the weights changing drastically, such as by
shuffling the training documents. Unfortunately,
even if non-deterministic operations can prevent
the output of m from being the same every time,
an attacker could still theoretically simulate every
possible run of m and search for a Θ′ that matches
the majority of the weights seen in Θ∗ for the
hashes known to the attacker. For strict differ-
ential privacy, this is assumed to be possible.
Other definitions have relaxed this assumption,
such as computational differential privacy (CDP)
[34]. In CDP, privacy is only guaranteed against
“efficient” (computationally-bounded) attackers.

Given that even a simple shuffling procedure
over x can result in |x|! possible input sequences,
we conjecture that for non-deterministic training
algorithms m, f(Θ) is ϵ-CDP for acceptably-small
values of ϵ. Proving that this is the case is outside
our scope, and we leave it as future work.

7 Related Work

7.1 Redaction

Redaction is currently the most common method
used in day-to-day operations to maintain the con-
fidentiality of words [8, 15, 39] or documents [23].
While some work has been done on automatic
redaction [39], semi-automatic redaction [8], and
human-assistance tools [15], there is often a high
cost associated with failing to redact something
sensitive (i.e., a false negative), making automatic
redaction difficult to trust in real-world scenarios.

Unlike differential privacy, redaction also does
not protect against inference attacks, where an
attacker might be able to infer a redacted word
by the surrounding context or by using auxiliary
sources of information. For example, a company

Springer Nature 2021 LATEX template

name might be redacted, but if other data points
are not redacted (such as operating region or rev-
enue) the attacker can use those data points to
narrow down the possible companies. This sort
of inference attack was famously seen when jour-
nalists were able to uncover the identity of users
in a dataset released by AOL [3], and seen again
recently when Netflix released redacted data, but
their users’ privacy was still breached [41].

7.2 Word Vector DP

Recent work attempted to apply differential pri-
vacy to text representations [29] in a deep learning
framework. The authors take word vectors and
convert the real numbers into 10-bit representa-
tions split into a sign bit, 4 bits for the integer
component, and 5 bits for the fraction component.
They then use a one-hot encoding technique to
flip each bit with some probability, with different
probabilities for even versus odd bits, and for bits
set to 0 versus 1. After evaluating the paper and
following up with private correspondence, we are
not convinced that this approach is sound.

One-hot encoding techniques assume that each
bit position is arbitrary, and this assumption is
broken when using a schema like the one used
in [29]. For example, flipping the sign bit has a
substantially bigger impact on the resulting word
vector than flipping the last fraction bit does.
Moreover, due to the nature of their perturbation
(where substantially more noise is added to bits
at odd indexes than at even indexes, and to 0
bits than to 1 bits), it leads to some word vectors
being almost completely untouched by the noise.
An attacker could be confident that word vectors
comprising of certain bits at certain indexes still
match the vector of the original word, destroying
confidentiality.

7.3 Empirical DP

Concurrent unpublished work [4] has proposed a
new “empirical” form of differential privacy (not
to be confused with an older technique that mis-
used the same name [5]). The authors propose a
framework that is similar to ours but with a focus
on tabular data, in which the probability distri-
bution of a dataset is compared to all possible
neighbouring distributions, effectively measuring
the empirical impact any one data point can have

on the dataset, without any noise needing to be
added.

8 Conclusion

When models are trained on confidential text, the
owners of the text may want to know that none
of the terms in the text will be discoverable. Dif-
ferential privacy allows us to quantify the risk the
terms are exposed to, and guarantee that no mat-
ter how much auxiliary information an attacker
might have (now or in the future), that risk cannot
increase.

We have demonstrated that by taking advan-
tage of the discrete, finite output space used by
feature hashing, it is possible to preserve the con-
fidentiality of individual terms without having to
perform any aggregation or noise addition on the
genuine hashes. Instead, differential privacy can
be achieved by filling the remaining hash space
with synthetic hashes that are indistinguishable
from genuine hashes. We have proven the privacy
guarantees, and empirically demonstrated that it
is possible to produce models that experience lit-
tle degradation in performance with only a small
privacy cost.

References

[1] Abadi M, Chu A, Goodfellow I, et al (2016)
Deep Learning with Differential Privacy. In:
23rd ACM SIGSAC Conference on Computer
and Communications Security. ACM, pp 308–
318

[2] Appleby A (2012) MurmurHash3. URL https:
//github.com/aappleby/smhasher

[3] Barbaro M, Zeller Jr. T (2006) A face is
exposed for AOL searcher no. 4417749

[4] Burchard P, Daoud A (2021) Empirical Dif-
ferential Privacy. arXiv 1910.12820:1–19

[5] Charest AS, Hou Y (2017) On the Mean-
ing and Limits of Empirical Differential Pri-
vacy. Journal of Privacy and Confidentiality
7(3):53–66

[6] Commission US, Exchange (2013) Electronic
Data Gathering, Analysis, and Retrieval sys-
tem. SEC Docket 118(19). URL https://

Springer Nature 2021 LATEX template

Universe 17

www.sec.gov/edgar.shtml

[7] Crammer K, Dekel O, Keshet J, et al (2006)
Online passive-aggressive algorithms. Journal
of Machine Learning Research 7:551–585

[8] Cumby C, Ghani R (2011) A Machine Learn-
ing Based System for Semi-Automatically
Redacting Documents. In: 23rd Conference
on Innovative Applications of Artificial Intel-
ligence. AAAI, San Francisco, USA, pp 1628–
1635

[9] Donnelly J, Roegiest A (2020) The Util-
ity of Context When Extracting Entities
from Legal Documents. In: 29th International
Conference on Information and Knowledge
Management. ACM, pp 2397–2404

[10] Dwork C (2006) Differential Privacy. In:
Automata, Languages and Programming, vol
4052. Springer, Venice, Italy, pp 1–12

[11] Dwork C (2008) Differential Privacy: A sur-
vey of results. In: Theory and Applications
of Models of Computation. Springer, Xi’an,
China, pp 1–19

[12] Dwork C, Lei J (2009) Differential privacy
and robust statistics. In: ACM Symposium
on Theory of Computing. ACM, pp 371–380

[13] Dwork C, Roth A (2013) The Algorith-
mic Foundations of Differential Privacy. Now
Publishers

[14] Dwork C, Feldman V, Hardt M, et al (2015)
Generalization in Adaptive Data Analysis
and Holdout Reuse. In: Cortes C, Lawrence
ND, Lee DD, et al (eds) Advances in Neu-
ral Information Processing Systems (NIPS
2015), vol 28. Curran Associates, Inc., p
2350–2358

[15] Engelstad PE, Hammer H, Kongsgard KW,
et al (2015) Automatic Security Classification
with Lasso. In: International Workshop on
Information Security Applications. Springer-
Verlag New York, Jeju Island, Korea, pp
399–410

[16] Fletcher S, Islam MZ (2017) Differentially
private random decision forests using smooth
sensitivity. Expert Systems with Applications
78:16–31

[17] Fletcher S, Roegiest A, Hudek AK (2021)
Towards protecting sensitive text with differ-
ential privacy. In: Trust, Security and Privacy
in Computing and Communications. IEEE,
p 8

[18] Fung B, Wang K, Chen R, et al (2010)
Privacy-preserving data publishing: A sur-
vey of recent developments. ACM Computing
Surveys 42(4):1–53

[19] Garfinkel SL, Abowd JM, Powazek S (2018)
Issues encountered deploying differential pri-
vacy. In: 2018 Workshop on Privacy in the
Electronic Society. ACM, Toronto, Canada,
pp 133–137

[20] Gil M, Alajaji F, Linder T (2013) Rényi
divergence measures for commonly used uni-
variate continuous distributions. Information
Sciences 249(905):124–131

[21] Greenberg A (2016) Apple’s ’Differ-
ential Privacy’ is about collecting
your data - but not your data.
URL https://www.wired.com/2016/06/
apples-differential-privacy-collecting-data/

[22] Guthrie D, Allison B, Liu W, et al (2006)
A closer look at skip-gram modelling. In:
5th International Conference on Language
Resources and Evaluation. European Lan-
guage Resources Association, Genoa, Italy,
pp 1222–1225

[23] Hammer H, Kongsgard KW, Bai A, et al
(2015) Automatic security classification by
machine learning for cross-domain informa-
tion exchange. In: IEEE Military Commu-
nications Conference. IEEE, Tampa, USA,
p 6

[24] Hastie T, Tibshirani R, Friedman J (2009)
The Elements of Statistical Learning, 2nd
edn. Springer-Verlag New York

Springer Nature 2021 LATEX template

[25] Kifer D, Machanavajjhala A (2011) No free
lunch in data privacy. In: 2011 International
Conference on Management of Data - SIG-
MOD ’11. ACM, p 193

[26] Kiss T, Strunk J (2006) Unsupervised Multi-
lingual Sentence Boundary Detection. Com-
putational Linguistics 32(4):485–525

[27] Kumar A, Finley B, Braud T, et al (2020)
Marketplace for AI Models. arXiv preprint
csCY 2003.01593:1–8. https://arxiv.org/abs/
2003.01593

[28] Lafferty J, McCallum A, Pereira FC (2001)
Conditional Random Fields: Probabilis-
tic Models for Segmenting and Labeling
Sequence Data. In: 18th International Con-
ference on Machine Learning. Morgan Kauf-
mann Publishers, pp 282–289

[29] Lyu L, Li Y, He X, et al (2020) Towards Dif-
ferentially Private Text Representations. In:
43rd International ACM SIGIR Conference
on Research and Development in Informa-
tion Retrieval. ACM, Virtual Event, China,
pp 1813–1816

[30] Machanavajjhala A, Kifer D, Gehrke J,
et al (2007) l-diversity: Privacy beyond k-
anonymity. ACM Transactions on Knowledge
Discovery from Data 1(1):3

[31] Machanavajjhala A, Kifer D, Abowd J, et al
(2008) Privacy: Theory meets Practice on the
Map. In: 24th International Conference on
Data Engineering. IEEE, pp 277–286

[32] McMahan HB, Ramage D, Talwar K, et al
(2018) Learning Differentially Private Recur-
rent Language Models. In: Sixth Interna-
tional Conference on Learning Representa-
tions, Vancouver, Canada, pp 1–14

[33] Mironov I (2017) Rényi Differential Privacy.
In: 30th IEEE Computer Security Foun-
dations Symposium. IEEE, Santa Barbara,
USA, pp 263–275

[34] Mironov I, Pandey O, Reingold O, et al
(2009) Computational differential privacy.

Lecture Notes in Computer Science 5677:126–
142

[35] Moody J (1989) Fast Learning in Multi-
Resolution Hierarchies. Advances in Neural
Information Processing Systems 1:29–39

[36] Okazaki N (2007) CRFsuite: a fast imple-
mentation of Conditional Random Fields
(CRFs). URL http://www.chokkan.org/
software/crfsuite/

[37] van Rijsbergen C (1979) Information
Retrieval. Butterworth

[38] Roegiest A, Hudek AK, McNulty A (2018)
A Dataset and an Examination of Identifying
Passages for Due Diligence. In: 41st Interna-
tional ACM SIGIR Conference on Research
and Development in Information Retrieval.
ACM, Ann Arbor, MI, USA, pp 465–474

[39] Sanchez D, Batet M, Viejo A (2012) Detect-
ing Sensitive Information from Textual Docu-
ments: An Information-Theoretic Approach.
In: International Conference on Modeling
Decisions for Artificial Intelligence. Springer,
Catalonia, Spain, pp 173–184

[40] Sarwate AD, Chaudhuri K (2013) Signal Pro-
cessing and Machine Learning with Differen-
tial Privacy. IEEE Signal Process Magazine
30(5):86–94

[41] Singel R (2010) Netflix cancels recom-
mendation contest after privacy lawsuit.
URL https://www.wired.com/2010/03/
netflix-cancels-contest/

[42] Sweeney L (2002) k-anonymity: A model for
protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based
Systems 10(5):557–570

[43] Vadhan S (2017) The Complexity of Differ-
ential Privacy. Harvard University

[44] Weggenmann B, Kerschbaum F (2018)
SynTF: Synthetic and differentially private
term frequency vectors for privacy-preserving
text mining. In: 41st International ACM

Springer Nature 2021 LATEX template

Universe 19

SIGIR Conference on Research and Devel-
opment in Information Retrieval. ACM, pp
305–314

[45] Weinberger K, Dasgupta A, Langford J, et al
(2009) Feature Hashing for Large Scale Mul-
titask Learning. In: 26th International Con-
ference on Machine Learning. ACM, Mon-
treal, Canada, pp 1113–1120

[46] Wu X, Li F, Kumar A, et al (2017) Bolt-
on Differential Privacy for Scalable Stochastic
Gradient Descent-based Analytics. In: ACM
International Conference on Management of
Data (SIGMOD 2017). ACM, Chicago, USA,
pp 1307–1322

[47] Zhang J, Sun J, Zhang R, et al (2018)
Privacy-Preserving Social Media Data Out-
sourcing. In: IEEE Conference on Computer
Communications. IEEE, Honolulu, USA, pp
1106–1114

[48] Zipf GK (1949) Human behaviour and the
principle of least effort. Addison-Wesley Press

Appendix A Model
Descriptions

Here we provide descriptions of the 20 models used
in our case study, labeled a) to t). Accompany-
ing statistics are provided in Table A1. For each
model, our in-house team of legal experts anno-
tated (i.e., labeled) any sentences in documents
pertinent to the particular topic the model is aim-
ing to extract. They then trained the models on
the documents using our no-code training inter-
face, iterating on their annotations based on the
system’s feedback until a high level of quality was
reached [38].

a) Evidence of Loans. This model captures the
requirement of the lender to maintain records evi-
dencing the indebtedness. This model was trained
on credit, facility and loan agreements.

b) “All-In Yield” Definition. This model cap-
tures the definition of “All-in Yield” or other
terms defining the yield payable to lenders on
loans. This model was trained on credit, facility
and loan agreements.

c) “Applicable Margin” Definition. This model
captures the definitions of “Applicable Margin”,
“Applicable Rate”, “Margin” or similar terms
defining the margin payable on a loan. This model
was trained on credit, facility and loan agree-
ments.

d) “Base Rate” Definition. This model captures
the definitions of any base rates applicable to a
loan, including prime rates, LIBOR rates, eurodol-
lar rates, screen rates, interpolated rates and
federal funds rates. This model was trained on
credit, facility and loan agreements.

e) “Cash Equivalents” Definition. This model
captures the definitions of “Cash Equivalents” or
“Cash Equivalent Investments” as typically refer-
enced in a borrower’s covenants. This model was
trained on credit, facility and loan agreements.

f) “Collateral“ / “Transaction Security” Defi-
nition. This model captures the definitions of
“Collateral” or “Transaction Security” provided
in connection with a secured loan. This model was
trained on credit, facility and loan agreements.

g) “Collateral Documents” / “Security Docu-
ments” Definition. This model captures the list
of documents that must be provided in connection
with a grant of a security interest in collateral.
This model was trained on credit, facility and loan
agreements.

h) “EBITDA” Definition. This model captures
various definitions related to the calculation of
earnings before interest, tax and amortization.
This model was trained on credit, facility and loan
agreements.

i) Dispositions or Asset Sales Covenant. This
model captures covenants of a borrower not to dis-
pose of assets other than in the ordinary course,
and will also capture the definition of “Permitted
Dispositions” or any exceptions to the definition
of “Asset Sale”. This model was trained on credit,
facility and loan agreements.

j) Financial Statements and Information Report-
ing Covenant. This model captures covenants of
a borrower to deliver financial statements and
other information to the lenders or agents. This
model was trained on credit, facility and loan
agreements

Springer Nature 2021 LATEX template

Table A1 Details of the 20 models used in the quantitative assessment of our case study.

Model
Document Word Count Unique Word

Count (millions) Count (millions)

a) 79 8 0.053

b) 194 20 0.108

c) 195 24 0.135

d) 321 30 0.140

e) 301 24 0.134

f) 290 19 0.120

g) 250 18 0.118

h) 348 28 0.140

i) 288 20 0.120

j) 365 28 0.150

k) 125 20 0.071

l) 196 15 0.083

m) 144 14 0.098

n) 365 20 0.122

o) 365 20 0.122

p) 373 21 0.128

q) 173 9 0.061

r) 300 24 0.124

s) 188 17 0.084

t) 326 25 0.142

Average 259 20 0.115

k) Change of Control – Credit Agreement. This
model captures mandatory prepayments and
events of default triggered by a change of con-
trol. This model does not capture covenants not
to make divestitures or to undergo fundamen-
tal changes (as these concepts can be captured
with separate models). This model was trained on
credit, facility and loan agreements.

l) “Specified Representations” / “Repeating Rep-
resentations” Definition. This model captures
the definitions of “Specified Representations”,
“Repeating Representations” and “Major Repre-
sentations”. This model was trained on credit,
facility and loan agreements.

m) Full Disclosure / No Misleading Information
Representation. This model captures representa-
tions by a borrower that all factual information
provided by it to the lenders or agents is true and
complete in all material respects. This model was
trained on credit, facility and loan agreements.

n) Assignment Transfer Fees. This model cap-
tures any transfer fees payable to the agent in

connection with the assignment or transfer of a
loan. This model was trained on credit, facility
and loan agreements.

o) Eligible Assignees. This model captures the
types of parties to which a lender may assign a
loan. This model was trained on credit, facility
and loan agreements.

p) “Approved Fund” / “Related Fund” Definition.
This model captures the definitions of “Approved
Fund” or “Related Fund”. This model was trained
on credit, facility and loan agreements.

q) Costs and Expenses. This model captures
the requirement that the borrower pay costs and
expenses associated with the loan transaction.
This model was trained on credit, facility and loan
agreements

r) “Excess Availability” Definition. This model
captures the definitions of “Excess Availability”,
“Availability” and similar concepts setting out the
amount available to be borrowed under an asset

Springer Nature 2021 LATEX template

Universe 21

based loan. This model was trained on credit and
loan agreements.

s) Equity Cure Rights. This model captures
rights of a borrower to cure a breach of the finan-
cial covenants with an equity injection. This model
was trained on credit and loan agreements.

t) “FATCA” Definition. This model captures
the definition of “FATCA”. This model was
trained on credit, facility and loan agreements.

Appendix B Qualitative
Assessment

For the qualitative assessment, our in-house
domain experts simulated a “Company A” shar-
ing 26 models with a “Company B”. They then
compared 8,182 segments of text extracted from
the same 600 documents using both the orig-
inal (“Model A”) and shared (i.e., privatized,
“Model B”) models. First a script was used to
remove all extractions that were identical for both
Company A and B, and then the remaining extrac-
tions were manually assessed. The models covered
the following use-cases: Credit Agreements, IP
and Licensing, M&A (Mergers and Acquisitions),
Leases, UCC (Uniform Commercial Code) and
Bond Indentures.

Out of the 8,182 comparisons, only six were
different and are quoted below. Of the six dif-
ferences, one was considered a “major violation”
by our domain experts, where Company B’s pri-
vatized version of the model missed text in an
extraction, and the text would be relevant and
important to the user. The other five differences
were deemed either minor differences, or arguably
an improvement for the private model (due to
the regularization effect of even previously-unseen
features having weights). These results support
the findings of our quantitative assessment: the
quality of privatized models remains very high.

IP and Licensing models

“Model B captured an additional text extraction
that Model A did not capture. The additional text
captured relates to the purpose of the [the model in
question].”

“Model B captured an additional text extraction
that Model A did not capture. The additional
text captured relates to the purpose of the License

Grant model (though not completely irrelevant, the
text is not correctly capturing the purpose of the
Exclusivity model [the model in question]).”

“Model B captured additional text in an extraction
that Model A did not capture. The additional text
captured relates to the purpose of the [model in
question].”

“Model B did not break the highlight (extraction)
like Model A did. So, Model B performed better on
this extraction.”

UCC models

“Model B missed text in an extraction that Model
A correctly captured. Model B missed a line of text
that it should have captured. Of all the differences
described herein, this miss by Model B was the most
troubling, though it missed a single line and not the
entire extraction.”

Lease models

“Model B captured an additional text extraction
that Model A did not capture. Model B captured
language for the Base Rent model [the model in
question] on an equipment lease. The Base Rent
model was not trained on equipment leases, but was
trained on commercial leases. The language in this
equipment lease appears as if it could be a Base
Rent provision, but should not have been extracted
in this document. Model A performed correctly and
Model B did not.”

