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Abstract—Natural language processing can often require han-
dling privacy-sensitive text. To avoid revealing confidential infor-
mation, data owners and practitioners can use differential pri-
vacy, which provides a mathematically guaranteeable definition
of privacy preservation. In this work, we explore the possibility of
applying differential privacy to feature hashing. Feature hashing
is a common technique for handling out-of-dictionary vocabulary,
and for creating a lookup table to find feature weights in
constant time. Traditionally, differential privacy involves adding
noise to hide the true value of data points. We show that due
to the finite nature of the output space when using feature
hashing, a noiseless approach is also theoretically sound. This
approach opens up the possibility of applying strong differential
privacy protections to NLP models trained with feature hashing.
Preliminary experiments show that even common words can
be protected with (0.04, 10−5)−differential privacy, with only
a minor reduction in model utility.

I. INTRODUCTION

When training machine learning algorithms for NLP tasks,
the training data often has a vocabulary that contains only
a sample of all the words that could appear in the target
population. Accordingly, techniques have arisen that account
for words that were not present in the training data. One
such technique is feature hashing [1], [2]. Feature hashing
solves the vocabulary problem by taking all of the features
created from the text – be they single words (uni-grams) or
more complicated features – and hashing them into a known,
predefined hash range. This hash range acts as the maximum
“dictionary size”; no matter how many unique features are
created, they are all deterministically mapped to a hash value
within the allowable range [1], [2].

Each hash acts as the corresponding feature’s index, like
in a real-world dictionary, except the features are stored in
numerical order rather than alphabetical order. Each hash then
points to a vector of weights that signal the importance or
relevance of the underlying feature in the given NLP task.
The weights can be learned and updated by a machine learning
algorithm, with the hashes acting as a lookup table (or “hash
table”) for the features. The end result is a feature set of
(hash,weights) pairs. When the learned model is applied
to new data (usually to classify the data or extract relevant
portions), the new data is featurized and hashed in the same
deterministic way, and thus connected to the relevant weights.

The data need not be text – any data that is being featurized
and hashed is applicable – however for the sake of clarity we
frame this paper in terms of text. Similarly, while features can

be created from any aspect of the input data, we will focus the
discussion on the most common piece of sensitive information
in a corpus of text: the words. That is, we tokenize (i.e., split)
the text into word segments (including symbols and numbers),
and use those tokens to build the features.

A. Ensuring Confidentiality

If the documents in a corpus contain sensitive information, a
privacy-preserving (i.e., confidentiality-preserving) technique
may be required before the documents can safely be used for
NLP tasks. Privacy-preservation may also be required in order
to safely share trained models on an AI marketplace [3].

While feature hashing already provides some amount of
obscurity to the raw text, privacy through obscurity is no
privacy at all [4], [5]. In this case, there are two main attack
vectors:
• an attacker who knows how the tokens are featurized and

hashed can guess words, hash the corresponding features,
and link them to preexisting hashes in the hash table; and

• inference attacks on the model’s output are unaffected
by hashing, so an attacker with a copy of the model can
input arbitrary text and observe the output any number of
times, and build up an understanding of the underlying
text and the distribution of the weights.

We assume an attacker possesses both of these abilities in our
threat model, described in detail in Section III.

B. Our Contribution

We propose the first privacy-preserving technique capable
of transforming a hashed feature set (that is, a hash table
and any number of weights associated with each hash), into a
differentially private version of the feature set. The technique
hides all the words featurized in the feature set by making
them indistinguishable from all other possible words.

Differential privacy [6]–[8] has quickly become the state-
of-the-art in privacy preservation [9]–[12]. It defines privacy
in terms of a priori and a posteriori knowledge: the inclusion
of any particular data point in a data set should not markedly
affect what could have been learned from the data if that data
point was not included.

In order to preserve the confidentiality of each word when
the words are being mapped to hashed features, our solution
requires a novel approach. Unlike most differential privacy
techniques, there is no aggregation we can employ when it



comes to a hash table – all hashes are equally “distant” from
each other, and adding “noise” to a hash equates to entirely
destroying it.

Before presenting our solution to this problem, we first
provide useful background information in Section II, and a
detailed description of the threat model we are operating under
in Section III. We present our technique in Section IV, and
some preliminary results in Section V. Related work can be
found in Section VI. We conclude in Section VII.

II. BACKGROUND

A. Feature Hashing

Also known as “the hashing trick” [1], [2], feature hashing
involves using a hash function [13] to map features to indexes.
It differs from traditional hashing in that instead of using each
hash as a key mapped to some value, the “trick” is that the hash
itself is the value. This has two main advantages: it is compu-
tationally fast and space-efficient, and, more importantly for
our purposes, it maps a potentially infinite number of features
into a known, bounded hash range.

The hashing function is deterministic; a feature (which may
just be a word in our scenario) will always be hashed to
the same value h. Hashes cannot easily be reverse-engineered
back to the original text string though – the hashing process
involves overwriting and shifting the bit string so many times,
that reversing the process leads to many trillions of possible
original text strings.

Remark 1. When using the hashing trick, the universe of
possible outputs U is finite, and known. For a particular
problem, the output distribution H will only use a subset of
the universe, H ⊆ U , from which the training data x and
testing data z are then drawn from. For an adequately large
x and z drawn from the same distribution, we know from the
Law of Large Numbers to expect minimal covariate shift; the
hash table outputted by g(x) is assumed to be close to the
hash table outputted by g(z):

g(x), g(z) −−−−−−→
|x|,|z|→∞

H

B. Differential Privacy

Proposed in 2006 [6], differential privacy is a tractable,
rigorous definition of privacy that can be quantified and
reasoned about. In the paradigm of differential privacy, the
data holder makes the following promise to each user:

“You will not be affected, adversely or otherwise,
by allowing your data to be used in any study or
analysis, no matter what other studies, data sets, or
information sources are available.” [8]

It has since been adopted as the de facto privacy standard
by companies like Google [12] and Apple [14], and has been
applied to numerous machine learning algorithms [9], [15]. It
has also recently been adopted by the U.S. Census Bureau,
who are using differential privacy for all data releases of the
2020 Census [16].

While other privacy definitions such as k-anonymity [17]
and l-diversity [18] exist, they do not provide any protection
from malicious users who possess auxiliary information from
other sources, or offer any provable guarantees about the level
of privacy being provided.

For our purposes, we can think of each “individual” or
“user” as being a unique term in the text corpus x, and define
differential privacy as follows:

Definition 1 (Differential privacy [6]). An algorithm f(·) →
M∗ is (ε, δ)-differentially private if for all possible outputs in
the universe M∗ ⊆ U , for all possible adjacent corpora x and
x′ that differ only by all occurrences of one term:

Pr(f(x) ∈M∗) ≤ eε × Pr(f(x′) ∈M∗) + δ (1)

The variable ε measures the maximum multiplicative change
in output probabilities, and δ measures the maximum additive
change (often thought of as the failure rate of the privacy
guarantee [8]). Note that Definition 1 is symmetrical for x
and x′.

For example, for a value like ε ≈ 0.1, the probability of
observing any particular output should not change by more
than 10% when a term in x is added or removed. In essence,
the removal or addition of a data point should only have a
small chance of affecting a function’s output (interestingly, this
is similar to the concept of over-fitting, and has been formally
explored in [19]).

Our goal is to design an algorithm f(M) → M∗ that is
(ε, δ)-differentially private.

C. Rényi Differential Privacy

Rényi differential privacy (RDP) [20] offers us another way
of formulating differential privacy (DP), in terms of the Rényi
divergence between two distributions. Compared to using
Kullback–Leibler divergence to measure differential privacy
[21], RDP better models the δ privacy risk in Definition 1,
and provides us with an α variable that allows for a smooth
trade-off between ε and δ. Framed in terms of text corpora,
RDP is defined as follows:

Definition 2 (Rényi differential privacy [20]). An algorithm
f(·) → M∗ is (α, ε)-Rényi differentially private if for all
possible outputs in the universe M∗ ⊆ U , for all possible
adjacent corpora x and x′ that differ only by all occurrences
of one term:

Dα(f(x)||f(x′)) ≤ ε (2)

where Dα is the Rényi divergence of order α > 1 between
two probability distributions P and Q defined over R:

Dα(P ||Q) ,
1

α− 1
lnEz∼Q

(
P (z)

Q(z)

)α
(3)

It was also shown in [20] that we can convert (α, ε)-RDP
into traditional (ε, δ)-DP in the following way:

Lemma 1 (Converting RDP to DP [20]). If f(·) obeys (α, ε)-
RDP, then f(·) obeys (ε + ln(1/δ)/(α − 1), δ)-DP for all
0 < δ < 1.



D. User-Level Privacy

Traditionally, differential privacy compares two “neighbor-
ing” data sets x and x′ that differ by a single data point, such
that |x| − |x′| = 1. This treats each data point independently.
User-level privacy is a variation that takes into account that the
same “user” may appear in x multiple times, and that we want
to totally hide the presence of the user, rather than just one of
their data points [8]. Two data sets are said to be “adjacent” to
one another if they differ by all occurrences of a single user,
such that |x| − |x′| = k, k ≥ 1.

This definition of adjacency matches our scenario, in which
we want to hide the presence or absence of all occurrences
of each term. Since the concept of a “user” is an ill fit
for our application, we instead call it term-level privacy.
Additionally, since multiple features can be created for each
of the k occurrences of a term, we define two data sets as
being adjacent if they differ by all K features associated with
a given term, |x| − |x′| = K, K ≥ k.

Two previous works have explored providing actual user-
level differential privacy against text-based linkage attacks
[22], [23]. At first glance this may sound similar to our work
here, however there is key difference: these works focus on
protecting the privacy of the people providing the text, rather
than protecting the confidentiality of the text itself.

III. THE THREAT MODEL

The threat model our technique operates under is one in
which a data owner has some machine learning model M ,
made up of:
• a data-dependent feature set F of hashed features H and

weights Θ, and
• data-independent logic (i.e., functions, algorithms, or

architecture) L that manipulates the feature set.
The data owner wishes to make their model public without
leaking any of the data x used to train the model.

Θ can be thought of as a weight matrix, where each row
(i.e., vector) index is equal to a hash h in H , and each column
is a random variable Xi. For clarity we describe the values
in Θ as “weights” as a catch-all term for any data-dependent
random variables, both continuous and discrete.

A malicious user (or “attacker”) may wish to uncover some
number of original features generated from the training data.
The attacker is assumed to have unlimited computing power at
their disposal, and any amount of auxiliary information about
the data, either now or in the future. Auxiliary information
can include secondary sources of information such as other
data repositories, information gathered via social engineering,
and estimates based on real-world knowledge or personal
experience. Any information that is learned about the data x
from a source other than x is considered auxiliary information.

The attacker is assumed to be able to reproduce the featur-
ization of the data and the hashing of the features. They also
know how privacy is added to the outputted feature set (pre-
sented in Section IV), but do not know any cryptographically-
secure randomly generated numbers used when adding privacy.

To model the worst-case scenario, differential privacy as-
sumes the attacker already has knowledge of all the data found
in x except for one data point, and by gaining access to x,
hope to discover that one data point. For example, only a
single term (all occurrences of the same word) in the training
documents may be unknown to the attacker.

Remark 2. In the scenario described, we can imagine that the
attacker has gained a copy of some document from a source
outside of x, but with one term redacted. Seeing the context
surrounding the redacted word may give them some clues
as to what the redacted term is. Fortunately, the definition
of differential privacy already incorporates these sorts of
linkage or correlation attacks, as part of the attacker’s a priori
knowledge. It is important to note that this scenario differs
from, say, redaction, in which all non-redacted terms are
directly leaked via access to x (that is, no a priori knowledge
is required).

Our goal is to prevent the attacker from increasing their
confidence about the identity of any data point. More explic-
itly, we want to hide the identity of the features, to prevent
the attacker from discovering the raw data used to make those
features. Note that the weights associated with the features are
not sensitive in their own right – they are only sensitive insofar
as they relate to the features. If the features are unidentifiable,
any associated weights are meaningless.

Rather than perturbing the internal mechanisms of some
machine learning algorithm m, we instead perturb the feature
set F in the outputted model M = {L, F}. This approach
is known as output perturbation [8], and allows our solution
to be “bolted-on” [24] to a variety of models, rather than
being closely tied to models trained by particular algorithms.
Any algorithm that builds a model from hashable features is
applicable, such as Conditional Random Fields (CRF’s), Hid-
den Markov Models (HMM’s), and Support Vector Machines
(SVM’s).1 Implementations of feature hashing can be found
in software packages such as Tensorflow, sci-kit learn, Apache
Mahout, R, Gensim, sofia-ml, Apache Spark, and Vowpal
Wabbit.

As our threat model assumes that the attacker has unlimited
time and access to the whole model, this is a non-interactive
setting [8]. This includes not just access to the input and output
(such as via an API), but also to the internals of the model
itself. We therefore need to not only protect against inference
attacks, such as inferring the presence of a data point based on
what the model outputs when given arbitrarily specific inputs,
but also against table linkage attacks, where the attacker can
view the hashes and weights directly and attempt to reverse-
engineer the features [10].

The concrete version of our problem setting, as it relates

1For differentially private deep learning models, we refer the reader to [12].
While popular, deep learning techniques require significantly more time and
compute power, often costing 10,000 times more dollars (and CO2 emissions)
to train than an equivalent CRF [25]. In our own internal testing, we have not
found it to offer substantial utility improvements in our domain to merit the
increased monetary, infrastructure, and environmental costs.
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Fig. 1. The process of training a model on a data set of text, then applying differential privacy on the outputted model to create a version of the model that
preserves the privacy of all of the words in the text.

to textual data, is as follows. Some function g(x) transforms
a corpus of documents x into features that are hashed and
stored in a hash table H ⊂ N. Each hash h ∈ H is an integer
between 1 and a finite number R, such as 106.

A machine learning algorithm m(x,H) is then trained on x
using the features in H , producing some model M , m(x,H) =
M = {L, F}. The algorithm m can use information such as
the frequency and ordering of the features found in x during
training, but this information is not stored in M – the only
data-dependent information in M is encoded in the feature set
F . As far as privacy-preservation is concerned, we can ignore
any data-independent framework or logic L.

Each element in F is a tuple mapping hashes h to weights
θh, F = {(h, θh); ∀h ∈ H}, where each θ = {wi;∀i, 0 <
i ≤ d}, and each wi is a realized random variate from some
random variable Xi among d random variables. We also use a
second construction that isolates the θ vectors: weight matrix
Θ = {θh;∀h ∈ H}, thus allowing us to write the feature set
as F = {H,Θ}.

There is no correlation between small changes in a feature
and the resulting hash; the hashes are approximately uniformly
randomly distributed. Given that g(x) = H is also a product
of x, we simplify m(x,H) to m(x) when context allows. See
Fig. 1 for a diagram of the training and privatization process
(the details of the privatization function f are described in
Section IV).

We can treat both g and m as black boxes for our purposes;
how featurization and learning occurs does not affect our
method. Our solution remains the same regardless of whether
the hashes are created from individual words, n-grams of
words [26], or in conjunction with other information like font
or layout. Each word can be part of multiple hashes without
affecting our approach, and the causal relationship between a
word and multiple features is taken into account.

The attacker is assumed to have arbitrary computational
power at their disposal, and an arbitrary amount of auxiliary
information. For example, the attacker can have all the words
in all the documents in the corpus x, except all occurrences
of one term that have been redacted. Even in that scenario,
our solution protects the confidentiality of the redacted term.
Other possible risks are:
• The attacker knows the featurization and hashing algo-

rithm g that was used, allowing them to guess features
and check if the corresponding hash appears in the list.

• The attacker has a template of the document that was
hashed, with all the text filled in except for the spaces
left for personalized information.

• The attacker has the resulting model M , and can freely
input specially crafted text and observe how M ’s output
changes, iterating as many times as they wish to see
which words trigger stronger responses from M .

Our solution, presented in Section IV, protects against all these
risks.

IV. TERM-LEVEL DIFFERENTIAL PRIVACY

In order to preserve the confidentiality of each term when
the terms are being mapped to hashed features, a novel dif-
ferentially private solution is needed. Unlike most differential
privacy techniques, there is no aggregation we can employ
when it comes to the hash table H – all hashes are equally
“distant” from each other, and adding “noise” to a hash equates
to entirely destroying it. The solution needs to account for the
fact that if the attacker has our hashing function, they can
guess words to hash and look for them in the hash table. Our
solution needs to release a hash table containing legitimate
hashes, while simultaneously not allowing an attacker to detect
which hashes are legitimate.

At a high level, we do this by hashing the entire universe.
We fill in the (finite) hash table, causing legitimate hashes
to become indistinguishable from the synthetically-generated
hashes. Any feature that could possibly exist will have the
same hash as countless other features, and have weights from
the same distribution as every other feature, meaning that
the model will act as if it saw every possible term in the
training data. As long as Remark 1 holds and enough hashes
correspond to the same features in new documents as they did
in the training documents, model utility remains high.

Since our goal is to protect the presence of terms, we are not
concerned with an attacker observing or learning weights in
the weight matrix Θ, except insofar as that information could
consequently reveal a term.

We use output perturbation to provide privacy: the
anonymization process f(M) → M∗ is performed after M
is outputted by m(x,H), but before it is publicly released.
Recall that M = {L, F} and that only the feature set F is
data-dependent (and thus in need of privacy preservation).

We break up F and its private version F ∗ into two compo-
nents: F = {H,Θ} and F ∗ = {H∗,Θ∗} (or alternatively,



F ∗ = {(h∗, θ∗h);∀h∗ ∈ H∗}). Similarly for the privacy
function f , we can break it up into f(H) → H∗, and
f(Θ)→ Θ∗. We can then recombine the privatized hash table
and weight matrix to make M∗ = {L, F ∗}. Only M∗ is ever
made available to the public (i.e., untrusted users).

See Fig. 1 for a flowchart of the process. We present our
strategy for f(H) and f(Θ) separately, and prove that these
parts are (0, 0)-differentially private and (ε, δ)-differentially
private respectively in Sections IV-A and IV-B below.

A. Anonymizing the Hash Table

While trivial to prove, we include the following claim for
completeness.

Claim 1 (Anonymizing H). Considering all possible hash
values 1, . . . , R, we note the hashes that do not appear in
H . The function f(H) “fills in” the noted missing hashes
to produce H∗, such that H∗ = {1, 2, . . . , R − 1, R} and
|H∗| = R. The resulting hash table H∗ is (ε, δ)-differentially
private, with ε = 0, δ = 0.

Proof. Observing that H is the output of g(x), we can
consider two adjacent corpora x and x′ as in Definition 1.
Function f(H) always outputs H∗, no matter what x is. Thus
Pr(f(g(x)) = H∗) = 100% for all possible x. Then, using
Equation 1, we trivially have:

Pr(f(g(x)) = H∗) = Pr(f(g(x′)) = H∗)

Pr(f(g(x)) = H∗) ≤ eε × Pr(f(g(x′)) = H∗) + δ

eε = 1, δ = 0

ε = 0, δ = 0

B. Anonymizing the Weight Matrix

Anonymizing Θ is about ensuring each h∗ ∈ H∗ has a
full set of plausible weights θ∗h; that is, weights that follow
the distribution observed in Θ, making the synthetic and
genuine hashes indistinguishable from each other. The weights
themselves are meaningless to an attacker without the ability
to identify the hashed features they are associated with, and
so do not need privacy protection in and of themselves.

We make the hashes indistinguishable by generating syn-
thetic weights from the same distribution as the genuine
weights. The function f(Θ) first fits a d-dimensional mixture
distribution X = {X1, . . . , Xd} to the realized random vari-
ates in Θ. We can also write this distribution as D(Θ). Each
weight wi ∈ θ ∈ Θ can be considered to be drawn from the
random variable Xi, for each i = 1, . . . , d.

For each of the synthetic hashes h∗ (i.e., the hashes that
are not in H), f(Θ) then generates weights for all possible d
elements in θh∗ by sampling from X.

Both continuous and discrete random variables can be used,
as well as any appropriate fitting function. If the distributions
of the d random variables in Θ are non-parametric, f(Θ)
can use Kernel Density Estimation (KDE) [27] or a similar
technique to perform the fit. See [28] for a recent example of

using KDE for a similar purpose. Otherwise parametric fitting
functions can be used. The better the fit is to the distribution
produced by m(x,H), the less erratically the distribution may
change when weights are added or removed in neighbouring
distributions, and the lower the privacy cost will be.

C. Measuring the Privacy Cost

With f(Θ) defined, we can now measure the privacy cost
of f(Θ) using Rényi differential privacy:

Claim 2 (Anonymizing Θ). Using the process described in
Section IV-B, for any given term appearing in up to K
features in H , function f(Θ) is (α, ε)-Rényi differentially
private (defined by Definition 2) for all possible adjacent Θ
and Θ′ that differ by K features:

Dα(D(Θ)||D(Θ′)) ≤ ε , s.t. |Θ| − |Θ′| = K

Additionally, f(Θ) is (ε′, δ)-differentially private, where ε′ =
ε+ ln(1/δ)/(α− 1) for any given α > 1 and 0 < δ < 1.

Proof. The calculation of ε and ε′ is a direct application of
Definition 2 and Lemma 1 respectively, using the concept
of adjacent data sets described in Section II-D. All vectors
produced by f(Θ) are fitted to or generated by the distribution
D(Θ). The output of f(Θ) is always a weight matrix Θ∗ of
length R with no missing vectors θh∗ , ∀h∗ ∈ H∗, or missing
weights w ∈ θh∗ .

For any given adjacent weight matrix Θ′ known to the
attacker, the only available attack vector to detect one or
more of the K unknown genuine hashes is to detect θ’s in
Θ∗ that diverge from the expected distribution D(Θ′), either
by guessing features and hashing them or by inferring the
features by how the model behaves on different inputs. Note
that Rényi divergence also captures the effect of any outliers in
the tails of the distributions, so features with unusual weights
are accounted for in the privacy cost.

Remark 3. K is different for different terms. This can move
adjacent distributions closer or further away, and the privacy
cost ε will likely be higher for more frequent words, where K
is large. Similarly, rarer words are more protected.

The data owner can calculate the privacy cost for specific
terms if they so choose. This also allows for the acceptable
privacy cost of extremely common terms and punctuation
like “the” and “.” to be higher than the acceptable cost of
rarer terms. Also note that the cost of any given term is
being calculated independently of the rest of x, so Parallel
Composition [8] applies – the costs of each term do not add
up.

Moving beyond theory, the effectiveness of Claim 2 in
practice depends on whether reasonable ε values can be
achieved, and how heavily the performance of model M∗ is
affected compared to what M could achieve. We provide some
preliminary results in Section V, but first we offer some insight
into why we can expect performance to remain high.



D. Model Utility

Recall from Remark 1: For any particular scenario being
modelled, the output distribution H will only use a subset of
the universe, H ⊆ U , from which the training data and future
data are both then drawn from.

The genuine hashes h ∈ H (and associated weights w ∈
θh) remain untouched by f(H) and f(Θ). Only hashes and
unrealized weights that were not part of the training data are
affected, and these elements are by definition outside of H .
When the same h’s are seen again in future data, they are
correctly assigned the unperturbed weights contained in θh.
Any weights in θh that were generated by f(Θ) will also be
assigned, but are expected to have little impact, as they were
not seen during training. The rarity of observing new hashes
outside the training distribution means that the addition of the
fake hashes h∗ does not overly distort the anonymized model
M∗’s predictions. We therefore expect model utility to remain
high after making the feature set differentially private.

Note that this sampling assumption weakens as the training
size decreases; a small sample x̂ may not converge to E[x] as
well as a larger x̂ would.

V. PRELIMINARY RESULTS

To test the viability of our solution, we had in-house lawyers
annotate the definition of an ”approved fund” across 373
credit, facility and loan agreements found in the EDGAR
dataset [29]. While these documents are public, similar agree-
ments in the real world could easily contain highly sensitive
information.

The annotations are labeled as ”relevant”, and the remaining
text are labeled as ”not relevant”. We trained a Conditional
Random Field model [30] using the Passive Aggressive al-
gorithm [31] in the CRFSuite software [32] to find the
relevant text. We use MurmurHash3 [13] to perform the feature
hashing, with a hash range of R = 221 ≈ 2× 106.

We find that the weights learned by the Passive-Aggressive
algorithm are approximately normally distributed, and there
is a high inverse correlation between the weights of the
“relevant” and “not relevant” class labels. This means we
can use a mixture of univariate Gaussian distributions, though
not a multivariate Gaussian distribution. We use the closed-
form equation found in [33] to calculate the Rényi divergence
for each univariate Gaussian. The most divergent adjacent
distribution for each dimension is created by removing the K
data points furthest from the mean. The Rényi divergence to
the adjacent distribution in each dimension are then summed
together to form the final privacy cost ε.

When trained on 80% of the documents and tested on
the remaining 20%, the (non-private) model achieves 92%
Precision and 94% Recall. After applying differential privacy
and filling in the hash table, Precision drops to 89% while
Recall holds steady.

As noted in Remark 3, K can be calculated separately for
any given term when calculating the privacy cost. Fig. 2 shows
the privacy cost ε of terms that appear in different percentages
of the total number of features (1,531,288 in this case) when

Term Frequency Privacy cost
7% 0.5 0.4906

0.7% 0.2 0.1671
0.07% 0.0 0.0376

0.007% 0.0 0.0088

Fig. 2. The privacy cost ε of terms at four different frequencies. The first
and third frequencies are labeled “the” and “day” as examples of terms that
occur at approximately that frequency.

δ = 10−5. Zipf’s Law [34] gives us an approximation for the
relevant frequency of common terms. For example, “the” is
the most common term, and appears in approximately 7% of
all features, so K = 107, 190 for “the”. Less frequent terms
appear inversely proportionally to their frequency rank, so
for example the 98th most common term, “day”, appears in
approximately K = 107, 190/98 = 1094 features. Sensitive
words, such as company names, are likely to be far less
common than this, and we can see in Fig. 2 that the privacy
cost of the 1000th most common word is ε = 0.009.

Dwork, the creator of differential privacy, has recommended
that the privacy cost remain at or below 0.1 [7], however
state-of-the-art machine learning algorithms often go as high
as ε = 1 [9], ε = 2, 4, 8 [12] or even ε = 8.6 [11].
We find it very promising that our technique can provide
guarantees as strong as (0.167, 10−5)-differential privacy for
even a reasonably common term, with only minor degradation
in model performance.

VI. RELATED WORK

a) Redaction: To the best of our knowledge, redaction
is the only viable technique currently used in day-to-day
operations to maintain the confidentiality of words [35]–
[37] or documents [38]. While some work has been done
on automatic redaction [37], semi-automatic redaction [35],
and human-assistance tools [36], there is often a high cost
associated with failing to redact something sensitive (i.e., a
false negative), making automatic redaction difficult to trust
in real-world scenarios.

Unlike differential privacy, redaction also does not protect
against inference attacks, where an attacker might be able to
infer a redacted word by the surrounding context or by using
auxiliary sources of information. For example, a company
name might be redacted, but if other data points are not
redacted (such as operating region or revenue) the attacker
can use those data points to narrow down the possible compa-
nies. This sort of inference attack was famously seen when
journalists were able to uncover the identity of users in a



dataset released by AOL [4], and seen again recently when
Netflix released redacted data, but their users’ privacy was
still breached [5].

b) Word Vector DP: One attempt has recently been made
to apply differential privacy to text representations [39] in a
deep learning framework. The technique takes word vectors
and converts the real numbers into 10-bit representations split
into a sign bit, 4 bits for the integer component, and 5 bits
for the fraction component. The authors then use a one-hot
encoding technique to flip each bit with some probability, with
different probabilities for even versus odd bits, and for bits
set to 0 versus 1. After evaluating the paper and following up
with private correspondence, we are not convinced that this
approach is sound.

One-hot encoding techniques assume that each bit position
is arbitrary, and this assumption is broken when using a
schema like the one used in [39]. For example, flipping the
sign bit has a substantially bigger impact on the resulting word
vector than flipping the last fraction bit does. Moreover, due
to the nature of their perturbation (where substantially more
noise is added to bits at odd indexes than at even indexes,
and to 0 bits than to 1 bits), it leads to some word vectors
being almost completely untouched by the noise. An attacker
could be confident that word vectors comprising of certain bits
at certain indexes still match the vector of the original word,
destroying confidentiality.

VII. CONCLUSION & FUTURE WORK

When models are trained on sensitive text, owners of the
text want to know that none of the terms will be discoverable.
Differential privacy allows us to quantify the risk the terms
are exposed to, and guarantee that no matter how much
auxiliary information an attacker might have (now or in the
future), that risk cannot increase. We have demonstrated that
by taking advantage of the discrete, finite output space used
by feature hashing, it is possible to preserve the confidentiality
of individual terms without having to perform any aggregation
or noise addition on the genuine hashes.

This work represents the first attempt at using differential
privacy to hide which hashes are genuine in a hash table.
This scenario exists in stark contrast to more traditional
applications of differential privacy, where noise is added to
data such as counts, linear queries, and summary information.
Given this novelty, we believe there are multiple areas where
improvements to our technique can be explored. Our next step
is to more thoroughly investigate the technique’s utility and
privacy cost in real-world scenarios, and extend it to handle
missing weights and online learning. There are likely many
more applications where our key observation – that finite
output spaces can be filled in – can lead to differentially private
solutions.
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