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ABSTRACT
When reviewing documents for legal tasks such as Mergers and
Acquisitions, granular information (such as start dates and exit
clauses) need to be identified and extracted. Inspired by previous
work in Named Entity Recognition (NER), we investigate how NER
techniques can be leveraged to aid lawyers in this review process.
Due to the extremely low prevalence of target information in legal
documents, we find that the traditional approach of tagging all
sentences in a document is inferior, in both effectiveness and data
required to train and predict, to using a first-pass layer to identify
sentences that are likely to contain the relevant information and
then running the more traditional sentence-level sequence tagging.
Moreover, we find that such entity-level models can be improved
by training on a balanced sample of relevant and non-relevant sen-
tences. We additionally describe the use of our system in production
and how its usage by clients means that deep learning architectures
tend to be cost inefficient, especially with respect to the necessary
time to train models.

CCS CONCEPTS
• Information systems→ Specialized information retrieval;
• Computing methodologies→ Machine learning.
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1 INTRODUCTION
In the practice of Mergers and Acquisitions (M&A) law, lawyers
review a company’s contracts and associated agreements for poten-
tial risk should their client seek to acquire or merge with the other
company. During this review, lawyers are tasked with identifying
key pieces of information that can help inform decisions related
to the transaction (e.g., deal amount). Historically, lawyers would
review large numbers of documents manually in short time frames,
which could lead to error prone decisions [27]. As the popularity of
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automated solutions continues to grow [1, 11], we build on previous
work [21] to extend automated strategies to identify and extract
entities and values.

To aid with our task, we draw motivation from NLP-based se-
quence tagging [4, 18, 24] where the goal is to label tokens in a
body of text. Such labels may include people, places, organizations,
products and other textual labels or may correspond to numerical
values (e.g., dates, percentages) or even short fragments of text with
a known meaning. In general, there is some overlap between the
broad categories of traditional sequence tagging and the desired
legal information to extract (e.g., dates). On the other hand, lawyers
often want only certain information extracted depending on their
exact use case. For example, while identifying a location is possible,
there may be many such locations in a contract and the lawyer only
seeks to identify the jurisdiction in which the contract is legally
binding. While previous research [21] has focused on identifying
legal information needs in the M&A domain at the sentence level,
such coarse-level extractions, as we will see later, return too much
extraneous information over and above what is desired.

It is common in sequence tagging tasks that a training instance
is simply a sentence interpreted as a sequence of tokens. In such
cases, each sentence may have one or more sets of labels being
applied. In the case of our task, often only one or two sentences
in an entire document contain the desired information. Accord-
ingly, we have a large class imbalance problem, as seen in Table 1,
which means that most of our training instances only contain non-
relevant labels. To address this issue, we propose a solution that
leverages a first-pass sentence layer that uses previously published
systems [21] to identify sentences that are likely to contain the
relevant information. Once these sentences are identified, we then
run what is largely an out-of-the-box sequence tagging layer using
Conditional Random Fields (CRFs). While one can alternate how
this infrastructure is used for training or for prediction to tailor the
efficiency and accuracy of the resulting machine learning models,
we show that generally the most training data efficient approach is
also superior to other configurations.

This paper presents our experimentation using this two-layer
approach. In particular, we vary the amount of training data (all
sentences, only relevant sentences, and a balanced sample) and then
compare how using a first-pass sentence classifier can improve the
effectiveness of the system with respect to the amount of data
required and the accuracy of the model with the ultimate finding
that the two-layer approach is much more efficient and effective
than a single-layer approach. Due to the on-going popularity and
success of deep learning methods in NLP, we also evaluate Flair [2],
a state-of-the-art deep learning based Named Entity Recognition
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(NER) solution,1 which follows the same one layer approach as
our baseline. While Flair does achieve effectiveness gains over our
baseline solutions, it comes at a much larger computational cost
during training and inference. Accordingly, while a deep learning
solution, such as Flair, may indeed be the state-of-the-art, it does
not appear to be practicable for use in production.

We provide a description of the deployment of this architecture
in our production environment over the last several years as well as
the limitations that our overall product offering places upon our ma-
chine learning. Additionally, we note that the training and testing
data used in this paper was generated and curated through the use
of our production system by a team of in-house legal professionals
with no special machine learning training.2 We conclude with some
thoughts on further directions that our technology might take, es-
pecially with regards to accelerating utilization of deep learning
architectures.

2 CONTEXT
2.1 Task Description and Constraints
Our document collection consists of a set of over 6,000 documents
which have been sourced by a team of legal professionals from the
Electronic Data Gathering, Analysis, and Retrieval system (EDGAR)3
and the System for Electronic Document Analysis and Retrieval
(SEDAR)4 repositories of public filings. From this source collection,
the legal professional curates 11 topics, which generally correspond
to an entity/value with a specific meaning (e.g., the start date of
a contract). For each topic, a subset of the document collection
is identified as potentially containing that topic and each docu-
ment in that subset is annotated for the respective topic.5 Table 1
shows some statistics on our corpus. In general, we can see that
the prevalence of a topic in a document can vary dramatically. In
Figure 1, we show an example from our “Governing Law” topic
(i.e., the jurisdiction under which a contract is governed). While the
gold standard annotation in this example is precisely highlighting
a location, a valid solution may annotate more or less information
depending on the scope of the topic. In sum, the core “task” our
system focuses on addressing is learning a machine learning model
from human annotations that matches the human annotations as
closely as possible.

To address our task, we have chosen to focus on the identifi-
cation of an individual topic (binary classification) rather than all
possible topics (multi-class classification) simultaneously. We struc-
ture the problem in this way due to several restrictions around
the user of our platform. In particular, topics may be developed
across time due to the cognitive effort of annotating documents
for many fields, the potential paucity in examples for a particular
topic and differing jurisdictions and languages having different use
cases and requirements. Accordingly, should a user need to train
a machine learning model to identify a concept, they can do so at

1Based on the rankings at http://nlpprogress.com/english/named_entity_recognition.
html.
2Source code for experiments and links to any released data are available from https:
//github.com/kirasystems/science.
3https://www.sec.gov/edgar/search-and-access
4https://www.sedar.com/
5As we have previously described the exact annotation procedures and behaviours of
our users elsewhere [12, 21], we do not reproduce such a description here.

their own convenience and as their needs dictate. If we followed
more traditional NLP use cases and wanted to train a classifier to
identify all instances of all topics then we would impose a high
burden on our users. Not only would they need to know all their in-
formation needs upfront, they would need to have all their training
data available at that instant. To elaborate on how this manifests in
our system, we direct you to Section 4.

As we mentioned earlier, lawyers conducting due diligence are
often in a time crunch and need to be able to identify information
quickly and efficiently. Moreover, they may discover that they need
to go back and identify new information as the process evolves.
Accordingly, any solution we employ must be quick to train and
conduct inference and also be highly accurate. This training effi-
ciency is both in terms of the amount of training data required
to achieve high accuracy but also in the associated computational
costs. To be more precise let us describe the two primary use cases
of our machine learning: pre-trained “out of the box” models and
user-defined models.

With pre-trained “out of the box” models we are referring to
those machine learning models that are produced by our in-house
team of legal professionals. These models attempt to preemptively
address the needs of our clients by providing models that are al-
ready tailored to their potential use cases. In doing so, the faster
that this team can train, validate, and release models due to their
high familiarity with the system, we have the potential to spare
clients from undertaking this process more than is necessary. This
necessity of clients training their own models ties into the second
use case where they find that one of our pre-built models does not
meet their needs (e.g., due to jurisdictional differences, disagree-
ment about the relevant scope of the model [22]). In these cases, we
want to ensure that clients spend as little time training as possible
so that they can get down to their core work. In either case, faster
and more efficiently enabling the training of high quality models by
non-machine learning experts facilitates a better user experience
and clients can attain greater value out of the platform.

2.2 Related Work
Prior work in NER has traditionally seen much success by applying
sequence models, such as Hidden Markov Models (HMMs) and
Conditional Random Fields (CRFs) [7], to this problem of identifying
particular classes of entities. This is due in part to the fact that
language tends to follow a logical sequence at the sentence level,
even if it differs from language to language (e.g., subject-object-
verb versus subject-verb-object). We have previously shown [21]
that we can exploit similar tendencies in legal documents to tag
sequences of sentences (as opposed to sequences of tokens) and
that such an approach is superior to binary sentence classification
which indicates that the relationships between sentences can be
good indicators of relevance.

Due to the explosion of interest in deep learning architectures,
new techniques (e.g., BERT [5], Flair [2], ELMo [16]) have pushed
boundaries and the the state-of-the-art for sequence tagging tasks
on a variety of benchmarks (e.g., CoNLL [28]). Moreover, several
NER techniques have leveraged the combined power of CRFs and
deep learning models to achieve state-of-the-art results [14]. Due
to its recent success in NER, we use the Flair framework [2] as our
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Avg Min Max
Documents 590.08 99 1,895

Documents w/example 485.62 29 1862
Sentences 795,035.69 95,851 2,130,122

Sentences w/example 943.77 46 3131
Table 1: Average, min and max number of documents, documents
with examples (documents containing a relevant (foreground) en-
tity), number of sentences, and sentences with examples (sentences
containing a relevant (foreground) entity), across all 11 topics.

representative deep learning baseline in this work. Flair uses pre-
trained character level LSTM language models to extract contextual
word embeddings. Flair then uses a combination of these contextual
embeddings and GloVe embeddings [15] as input to a BiLSTM-CRF
sequence classifier. An interesting aspect to glean from Flair is that
context is important and that CRFs are still relevant to modern
tagging architecture.

2.3 Our task vs “Traditional” NER
Our task and solution differ from those of well studied NER prob-
lems, such as the CoNNL 2003 shared task [28], in two ways: first,
there is a large data imbalance in our corpora, where we are looking
for “needles in a haystack” (i.e., one or two instances per document).
Secondly, due to the constraints described above, we prefer a binary
classifier for each of our topics, whereas state-of-the-art solutions
on public NER datasets (e.g., CoNLL 2003 task [28]) consist of multi-
class deep learning models. Due to the resources required to train
deep learning models, we argue that they fit into use cases where
models are updated infrequently rather than situations requiring
rapid iteration. Additionally, the specialized hardware to train deep
learning algorithms also means that we place requirements on
clients should they decide not to use our platform in the cloud.
Such a constraint is not ideal if we want to minimize the cost of
maintaining different architectures or allowing clients the ability to
control where their data resides. Furthermore, despite state-of-the-
art performance on public NER datasets [14], our experiment using
Flair [2] in Section 4.4 shows that the performance gain is not large,
and is disproportionate to the resources required to attain it.

3 DOCUMENT COLLECTION
To follow the Cranfield Paradigm [3] for our experimental setup, we
require a set of topics annotated (or judged) across several topics
in a document collection. Due to the nature of the legal profes-
sion, it is difficult to acquire legal documents that we can use to
make a representative document collection. In the United States and
Canada, publicly traded companies are required to produce certain
classes of contracts, agreements, and financial documents. Such
documents were manually curated from the United States’ EDGAR
and Canada’s SEDAR collections. Our team of legal professionals
crawl these repositories for documents that are relevant to their
needs and are subsequently included in our document collection.
Summary statistics of the collection (post topic creation and anno-
tation) are found in Table 1. We note that until a resulting model
is deemed “suitable” to release to customers (i.e., meets internal
quality requirements defined by the team) the associated set of
training documents may change over time (e.g., often documents
are added to reflect particularly nuanced languages).

3.1 Annotation Methodology
Following a similar protocol to that outlined in our previouswork [21],
our team of lawyers obtained documents relevant to the set of topics
and then annotated the regions of text in those documents corre-
sponding to the entities for each topic. The annotation process
was conducted using our in-house annotation platform [23] and
topics were selected due to perceived benefit to our customers. We
worked with our in-house team to select 11 high-quality topics
that exhibited the desired phenomenon and were representative of
the various use cases that we seek to address for clients. Broadly
speaking, these topics correspond to either numerical (e.g., dates,
monetary values) or textual (e.g., addresses, locations) values and
the titles can be found in Table 3. While end users may wish for
extracted values to be normalized in some fashion (e.g., dates nor-
malized into a consistent format), we are only concerned with initial
extraction of text which could then be normalized in some later
data processing pipeline.

3.2 Data Preprocessing
All documents are initially ran through OCR (due to their nature
as PDFs) and annotated using the aforementioned annotation sys-
tem. Sentence segments are obtained using the “punkt” sentence
segmentation algorithm [9] that we trained on a collection of legal
documents obtained from EDGAR years ago. Tokenization utilizes a
similar set of tuned rules based on the same corpus used to train the
sentence segmenter. The fully preprocessed version of our corpus
consists of the preprocessed source text for each document along
with additional sentence and token labels. Sentence level labels
correspond to the presence of an overlap with an annotation (two
classes); while token level tags correspond to the position of each
token in an annotation or its lack thereof. Following convention,
we use BIE tags at the token level, representing the beginning,
inside and end of an entity, and a background tag, O (for those
tokens outside of any annotation). Figure 1 shows an example of
a single instance of the “Governing Law” topic, showing both the
sentence and token level tags. As we will discuss in more detail in
Section 4, these two levels of tagging are used to train two “levels”
of sequence tagger that we can leverage to identify the contextual
sentence containing a topic instance and then run amore traditional
style sequence tagger on the identified sentence.

4 EXPERIMENTAL METHODOLOGY
As shown in Table 1, each document contains thousands of sen-
tences of which only a few contain the relevant entities. In this
section, we describe a baseline single-layer entity model based upon
the common NER strategy for entity recognition and a novel two-
layer strategy that uses an additional sentence level CRF to first
detect contextually relevant sentences and then run a more tradi-
tional sequence tagger. The end goal of this two-layer approach is
to mitigate the class imbalance issues in our training data. We also
discuss the mechanisms for evaluating these strategies at the end
of the section.

4.1 One-layer strategy
The one layer strategy is the simplest application of CRFs to our
problem as we treat every sentence as a training instance. Figure
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Figure 1: A sample of our training data for the “Governing Law”
topic. The left part of the figure shows a sequence of sentences for
an example document, where each sentence is labelled to indicate
whether it contains (1) or does not contain (0) the desired informa-
tion. On the right, we show the tokenized version of the relevant
sentence with corresponding BIE labels for beginning, inside or end
of a topic (foreground) sequence and O for background.

Figure 2: Diagrams illustrating the evaluation of the one-layer (bot-
tom) and two-layer (top) CRF strategies.

2 illustrates the evaluation of this strategy. S = t1, t2, ..., tN rep-
resents a sequence of tokens to be tagged, where each token has
corresponding n-gram and skip-gram features, which were derived
using grid search early into our product’s development. To help
reduce the memory footprint, we also utilize feature hashing [29]
to reduce model complexity. Similar to prior work [21], we exam-
ined L-BFGS [10] and Passive-Aggressive (PA) [26] optimization
algorithms tuned using grid search, with this paper using L-BFGS
with L2-regularization set to 0.1 and maximum iterations to 100.
During inference, our model will output BIE token-level tags but,
as this work is primarily concerned with identifying the “correct”
span of text, we translate all foreground labels (B, I or E) to 1 and all
background labels (O) to 0. In other words, we are less concerned

with the recall and precision of individual labels and are more fo-
cused on measures that represent a user’s view of the extracted
text.

To tackle the data imbalance issue, we attempt to improve train-
ing time by examining three different substrategies using different
samples of the training data. In the first substrategy (“1layer-all”),
we simply train on all sentences regardless of whether they contain
a relevant entity. In the second substrategy (“1layer-pos”), we sim-
ply train only on sentences containing a relevant entity to vastly
reduce our training set. However, this second strategy has the poten-
tial to become too prone to false positives having seen no examples
of non-relevant sentences. Accordingly, we use a third substrategy
(“1layer-smp”) that randomly samples 1 non-relevant sentence for
every relevant sentence in a document. The goal of the third strat-
egy is to help balance out the amount of relevant and non-relevant
class information. While other ratios are possible, we use this one
for simplicity and brevity.

4.2 Two-layer strategy
In our two-layer strategy, we augment the one-layer strategy by
training a “sentence-level” CRF that tags whole sentences as poten-
tially containing a relevant entity (i.e., using higher level contextual
information). To train the sentence-level model, each document
D = s1, s2, ..., sN , which is a sequence of sentences, is treated as a
training instance. The features used to represent the sentences are a
combination of n-gram and skip-gram features as well as word2vec
cluster features [21]. To train the sentence-level model, we simply
use the defaults of prior work [21]. We then layer the “one layer” en-
tity strategy described above on top of this “sentence-level” model
such that any sentences identified by this model are then tagged
by the entity model.

Figure 2 illustrates the evaluation of the two-layer strategy.
Whole sentences which are tagged as potentially containing an
entity, denoted in the diagram as TPs and FPs (true positive and
false positive sentences, based on the sentence-level labels) are
tagged by the token-level model and evaluated as token level ex-
tractions.We note that to evaluate this system fairly to the one-layer
approach, any false negatives from the sentence model, FNs , are
assigned all background token-level tags for scoring.

The biggest benefit to the two layer approach is that prediction
can be substantially faster. Instead of tagging the vast number of
sentences we know are likely to be non-relevant, we can isolate
sentences that are more likely to be relevant. Accordingly, we can
further improve training time depending on how we provide train-
ing data to the entity-level CRF and so we have three two-layer
sub-strategies that are analogous to those in Section 4.1: “2layer-all,”
“2layer-pos,” and “2layer-smp”.We note that 2layer-pos is the closest
strategy to the one we deploy in production.

4.3 Evaluation and Metrics
For all experiments we use 5-fold cross validation to evaluate the
various strategies. The most straightforward way to produce scores
would be to simply count the True Positive, False Positive and
False Negatives per token label and calculate Precision and Recall
from these. However, one disadvantage of this technique is that
longer sequences are given greater weight. Using an example with
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Figure 3: Example of a sentence from corpus with true label and
mock predictions. The top line with yellow highlight represents a
gold highlight for a jurisdiction. The blue and green highlights rep-
resent partially correct predictions.

recall: say our model misses an entity sequence of 5 tokens in
length. This will have a greater impact on recall than an entity
sequence of 1 token in length since tp/tp + f n+ 5 < tp/tp + f n+ 1.
From a user’s perspective, it is not necessarily worse to miss longer
entity sequences (i.e., any miss is bad). For this reason we choose
to consider two other types of measurement.

The first, which we refer to as “Annotation” type Precision, Re-
call and F1 examines whether the predicted span of text overlaps
with the gold standard which is simply a binary overlap measure
where any overlap is treated as a success. However, this measure
doesn’t account for either extraneous or missing segments of over-
lapping regions. This can be problematic as the sentence-level CRF
could produce ideal extractions (predictions spanning entire sen-
tences would overlap with smaller spans within the sentences and
extraneous overlap would not be penalized) but would annotate
too much text and potentially provide unwanted information to an
end user (e.g., all the text around a specific date).6 To accommo-
date this, we adopt the plagiarism detection methods of Potthast et
al. [17] (“Plagdet”) and their macro-averaged Recall, Precision, and
F1. These measures should generally account for how much (or lit-
tle) text overlaps between the predictions and gold standard. Thus,
sentence-level annotations would get penalized for highlighting
too much extraneous information.

Figure 3 helps illustrate the difference between these two types
of scoring with an example of a sentence from our corpus. The
true label is highlighted in yellow and examples of foreground
predictions on the sentence are highlighted in blue and green. For
Annotation type scoring, the blue and green highlights would result
in perfect contributions to the scores. However, for Plagdet scoring,
the blue highlight would lower precision (too much highlighted)
and the green highlight would lower recall (not enough highlighted).
When the predicted highlighted section overlaps perfectly with the
true highlight, then contributions to both types of scores are the
same. The closeness of these two scores provides an indication
of how close to perfect our predictions are with respect to the
gold standard. Complete false negatives and false positives (not
overlapping with a gold annotation at all) affect either evaluation
type equivalently.

4.4 Flair experiment
Internally, we have often experimented with deep learning tech-
niques to assess their viability in our production systems but have
not seen sufficiently compelling gains to warrant their associated
cost. In this section, we provide a case study using a single topic
to help illustrate our issues more concretely. To do so, we use Flair
6It is worth noting that there are edge cases with this type of measurement which
must also be accounted for. For example simply highlighting everything as foreground
would yield perfect scores.

Method Recall Precision F1 AnnF1 Time
Flair 80.93 96.26 87.93 90.87 ~12 days

1layer-all 71.21 91.42 80.06 83.68 ~45 mins
1layer-pos 97.73 1.79 3.51 3.87 ~100 seconds
1layer-smp 97.19 18.59 31.21 31.83 ~130 seconds
2layer-all 67.77 95.30 79.21 82.28 ~50 mins
2layer-pos 79.01 92.59 85.26 86.79 ~5.5 mins
2layer-smp 79.25 92.99 85.57 87.03 ~6 mins

Table 2: “Plagdet” based Recall, Precision and F1, “Annotation” F1
and approximate time to train and evaluate each method using 5
fold cross validation for our “Employee Name” topic.

Topic \ Strategy 2-lyr-all 2-lyr-pos 2-lyr-smp 1-lyr-all
Employee Name 79.21 85.26 85.57 80.06
Governing Law 87.43 93.75 93.88 84.88

Address of Premises 71.32 82.77 82.89 69.35
Commencement Date 71.51 80.80 80.84 69.98

Rent Amount 35.78 74.10 74.57 40.49
Interest Rate 86.77 91.71 91.71 86.11
Maturity Rate 80.33 86.47 86.47 80.64

Date (UK leases) 63.67 44.98 46.10 63.48
Management Fee 19.82 36.32 36.32 17.78

Duration 74.67 88.14 87.91 68.73
Sq. Ft. of Premises 77.61 87.52 87.57 75.66

Table 3: “Plagdet” based F1 per topic for all the two layer strategies
and the 1layer-all strategy. We omit 1layer-pos and 1layer-smp be-
cause they are ineffective as standalone solutions without sentence
filtering, as can be seen in Figure 4.

[2], described in Section 2.2, that at the time of writing is one of the
state-of-the-art solutions for NER that utilizes deep learning [14].
While scientific rigor would require us to run all 11 topics with Flair
for a “true” comparison, we also seek to not spend more resources
than is necessary to illustrate our point. To that end we evaluate
Flair on 1 topic, “Employee Name,” that seeks to capture an em-
ployee’s name from agreements pertaining to their employment.
We note that this topic also comprises the fewest documents (and
subsequently annotations) of all our topics with the raw text com-
prising only 80.9Mb of disk space versus the average of 583.2Mb.
While we expect all methods to do better with more training data,
this method was explicitly chosen to limit the required computa-
tional resources as much as possible. In this way, this might not be
entirely fair to Flair (i.e., its effectiveness could be better with more
data) but we believe that it is sufficient for illustrative purposes.
We also note that to ensure we did not erroneously setup Flair, we
replicated its performance on the CoNLL 2003 NER task [28].

We ran Flair in exactly the same experimental setup as all other
methods which means that we used 5-fold cross validation to eval-
uate Flair and otherwise train it equivalently to the 1layer-all strat-
egy. We acknowledge that this is not necessarily “status quo” for
deep learning techniques but note that such an approach mimics
the evaluation that our production has historically used. In an at-
tempt to minimize monetary cost and architectural convenience,
we trained Flair using a P4 GPU rather than a more expensive P100
GPU. While this is not an ideal infrastructure, we felt that a P4
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Method Recall Precision F1 AnnF1
1layer-all 61.9 (21.6) 75.5 (15.0) 67.0 (19.7) 68.1 (19.7)
1layer-pos 97.9 (2.6) 2.6 (2.5) 5.0† (4.7) 5.1 (4.7)
1layer-smp 97.6 (2.6) 19.3 (12.3) 30.6† (16.2) 31.1 (16.4)
Sentence 78.1 (16.9) 17.5 (9.4) 27.4† (12.1) 78.5 (17.3)
2layer-all 58.4 (21.1) 86.4 (12.6) 68.0 (20.3) 69.0 (20.2)
2layer-pos 77.2 (17.6) 81.0 (17.8) 77.4 (18.2) 78.0 (18.0)
2layer-smp 77.1 (17.6) 81.3 (17.6) 77.6 (18.0) 78.2 (17.9)

Table 4: Mean and (standard deviation) Plagdet recall, precision, F1
and Annotation F1 (“AnnF1”) across test folds and topics. † denotes
that F1 scores for this method are significantly different (p < 0.01,
paired t-test) to the 2layer-pos strategy.

might more closely resemble the consumer hardware that would be
available if someone were to run our system outside of the cloud.

In Table 2, we can very clearly see that Flair, despite the rela-
tively small amount of data, does exceed the effectiveness of all
of our approaches, even our in-production architecture. But very
critically takes ~2,800 times longer to train, which is roughly 10,000
times the cost (i.e., hundreds of dollars versus fractions of a cent),7
when compared to that same production architecture. With regard
to prediction time, it takes approximately 15 minutes to perform
prediction on a single test fold using Flair, which is longer than the
time taken to fully evaluate our production architecture using 5 fold
cross validation. Accordingly, it becomes very clear that the very
slight effectiveness gains made by Flair are more than outdone by
the associated cost. Indeed, in fractions of the time, we could very
likely conduct a parameter sweep to tune 2layer-pos and achieve
equivalent or superior effectiveness in substantially less time. We
also readily acknowledge that our Flair solution is not necessar-
ily optimized for production (e.g., determining optimal layer size,
number of embeddings, etc), but note that such tuning is also likely
to be data dependent and may not be consistent across all potential
topics. Accordingly, we find that this baseline Flair implementation,
which is identical in configuration to the settings used to achieve
state-of-the-art results on the CoNLL 2003 task [28], is reasonable
and reflects the general trends we would expect. These results, elid-
ing any infrastructure changes, very strongly disincentivize the use
of similar deep architectures in our production environment.

5 RESULTS
When we examine Table 4, we can immediately see that out of the
one-layer strategies, using all sentences yields a vastly superior
model across topics. This is likely due to the fact that since the
one-layer models must predict for every sentence, the sampled
and positive-only training regimes means that those strategies
overvalue certain features too much. But we note that there is
a substantive improvement when just adding one non-relevant
example for every relevant exaple, providing some indication that
there may be an optimal sampling point at which there is less
training data utilized but attains similar performance to 1layer-all.

As we might have expected from Section 4.3, the sentence-level
model performs poorlywith respect to the “Plagdet” basedmeasures
but appears to do seemingly well on annotation-level F1 which
7The P100 GPU would reduce this disparity due to shorter training time but not as
substantially to make it viable.

reinforces the utility of not just relying on simple binary overlap. In
spite of poor sentence-level “Plagdet” performance, the two-layer
results shows that this use of contextual information (identifying
sentences that are likely to contain the topic of interest) can greatly
aid in the performance of the positive-only and sampled training
regimes. We posit that this is because this more closely aligns to the
training data they received. A similar argument holds with 2layer-
all but less dramatically, likely due to the fact that the 1layer-all
strategy is reasonably able to distinguish sentence instances that
should have a highlight from those that do not due to the copious
amount of non-relevant training examples.

An interesting aspect of our evaluation is the near equivalence
of plagiarism detection F1 and annotation-level F1 for the one- and
two-layer strategies. This likely indicates that when these strategies
make a prediction it is generally completely correct (no added or
omitted text) and that they are instead just failing to identify some
portion of gold annotations or are erroneously identifying entire
spans. The small differences show that this isn’t always the case but
when the predictions align with the gold standard they generally
are highly accurate. It is also worth noting that there is a practical
upper-bound on the effectiveness of the two-layer strategies, where
their recall (at any level) is fundamentally limited by the context
sentences identified by the sentence layer.

As might be expected, for some topics, particularly “Management
Fee”, all strategies do not perform well due to the nature of the an-
notations and variations around the topics as can be seen in Table 3.
Removing this topic generally results in substantial improvements
to average effectiveness for all but the 1layer-pos strategy (due to it
being consistently bad). Though for the 2layer-pos and 2layer-smp
strategies variance is generally halved due to the omission which
may provide some indication that these strategies are more sensi-
tive to the training data (annotations for these two topics are less
consistent) than other strategies.

In Figure 4, we depict how much training data (in terms of the
number of folds) is necessary to achieve saturation for the various
strategies with respect to Plagdet F1. It becomes immediately appar-
ent that the 1layer-pos strategy receives no benefit from more data
and is a poor performer overall. 1layer-all and the 2layer strategies
all have a general increase in performance and reduced variance
as more data is added. The biggest improvement comes after the
second fold, likely due to further reinforcement of critical features.
Overall, 2layer-all is slightly better than 1layer-all indicating that
using a contextual filter can be useful in reducing inference time
and increasing accuracy with only a small increase in training time.

6 PRODUCTION DEPLOYMENT
The aforementioned 2layer-pos architecture has been deployed in
our production environment over the past 6 years with various
tweaks to the features used in the intervening years. We note that
it is fundamentally an infrastructure that our users themselves (e.g.,
legal professionals) annotate, train, and assess the quality of the
resulting models themselves through a relatively straightforward
interface (see Figure 5 for an example).8 In this way, our users are
empowered to train models to extract their desired information

8We note that we have previously described the user aspects of this interface and
behaviours elsewhere [12, 23].
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Figure 4: Boxplot illustrating the performance of each of the strate-
gies across all 11 topics as each fold of training data is added.
Coloured boxes contain the median and upper and lower quartiles.
Whiskers extend to 1.5× IQR (IQR is the interquartile range) above
and below the upper and lower quartiles.

without requiring in-depth machine learning or data science knowl-
edge. While such a “one size fits most” architecture does limit what
users can control (e.g., limited hyper-parameter tuning), we have
not found this to be particularly troublesome for the vast majority
of our users.

This contrast between a more traditional “train once, arbitrary
inference,” usually by machine learning experts,9 and “arbitrary
training, arbitrary inference” means that our production needs dif-
fer from conventional methods. Due to this, we need to be able to
“scale up” to meet training demand and ensure models are trained
in a timely and cost effective manner. As we saw in Section 4.4, this
may not be as feasible as we would like with complex deep learning
techniques. While we can achieve an effectiveness improvement
using deep learning, it comes at the cost of training time and in-
creased hardware costs and requirements. Essentially, if we want
our users to be actively empowered to train models to meet their
information needs, we want to reduce the barriers to this training
process. Increasing costs and training time is unlikely to facilitate
this type of behaviour, especially as our users likely to see progress
on model development with relatively few training documents (e.g.,
10s to 100s).

While there are always performance optimizations (e.g., fewer
embeddings, quantization, pruning) to improve model size and
training time, often this comes at the expense of model effective-
ness. Performing such optimization may still yield a more costly
architecture when contrasted with the relatively low costs of CPU-
only training. Even more so when we consider that it may still be
cheaper, faster, and more accurate to do per-topic hyper-parameter
sweeps with the simpler architecture. Additionally, we have seen
that models can be sensitive to the jurisdiction of the documents

9We note that training may occur more than once but is often not done in the produc-
tion system and once a sufficient quality is achieved is “frozen” until improvements
can be made.

that they were trained on (e.g., due to differences in law and termi-
nology) and are wary of the burden that this might place upon us
to produce “tuned” aspects of the architecture for every possible
use case.

The final consideration that is required for our production plat-
form is that some subset of our clients will desire to run the platform
on their own hardware.10 This means that architectural changes of
our machine learning have to consider the additional requirements
that this can place upon them and potentially on us (e.g., additional
support). Moreover, any requirements we set need to be sufficiently
justified (e.g., substantial effectiveness increases or training time
decreases). We may also allow them to elect not to use such tech-
nology but then need to maintain and support the current machine
learning architecture that we have described. In either case, we end
up having additional costs to meet the needs of these clients and
that adds another factor in choosing the right architecture for our
platform.

7 FUTUREWORK
While Deep Learning continues to show effectiveness gains in
NER and other NLP tasks, these gains come at great computational
expense, which we have shown in our experiments. However, Rep-
resentation Learning is a promising direction for future work. The
Flair [2] framework uses a deep learning model as a sequence
classifier on top of pre-trained language models and Glove [15]
representations. Other works [6, 19] have focused on using linear
classifiers on top of representations obtained from pre-trained lan-
guage models. This approach is advantageous because it requires
less energy to train the additional linear model but still requires the
use of GPUs to extract the document/sentence/token representation
when the language model is large. Beneficially this generation of
representations is generally a fixed cost (i.e., often a one time cost)
rather than a repeated cost paid every time a model is trained. Other
recent research in representation learning has explored how large
deep learning architectures [20], different pre-training objectives
(e.g., BERT’s Masked LM [5]), and different pre-training tasks (e.g.,
machine translation [25]) result in different representations that
can affect downstream performance. In all these cases, the intuition
is that the model must produce internal representations of language
to perform the pre-training task which may then be useful for other
tasks. In our case, another promising, though still computationally
heavy approach, is that of “knowledge distillation” [8] in which a
smaller model is trained using the predictions of a larger model.

We are also interested in the “explainability” and “interpretabil-
ity” of NLP models, especially when they are designed for non-
experts. Through increased transparency into the how and why of
a model, we might be able to facilitate more efficient and effective
training processes in our users (i.e., users may have a more concrete
“cause and effect” mental model when training than they do now).
Moreover, such advances in explainability and interpretability may
yield improved feature generation even for simpler models. That is,
if deep learning architectures are simply learning more effective
variants of our existing features (e.g., n-grams) then we may be
able to leverage such insights into equivalently effective shallow

10This is generally due to contractual obligations around data privacy and governance.
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(a) The learning tab allows users to view summary metrics around false posi-
tives and negatives. As well, they are able to viewmore traditional effectiveness
measures as calculated using five-fold cross validation. Not pictured is the user’s
ability to select which data to learn from.

(b) The validation tab allows users to view themissed or extracted text and iden-
tify problematic language or consistent trends in behaviour for remediation.

Figure 5: Snapshots of our model training UI that non-experts are able to use to train machine learning models

models.11 On the other hand, such improvements may also help
us identify Niven et al.’s “spurious cues” [13] (e.g., the presence or
lack thereof of a potentially unrelated single word). By identifying
them, we can then determine whether such cues are worth exploit-
ing or attempting to mitigate. That is, due to the relatively closed
domain of our task, it may actually be beneficial to leverage such
cues to reduce the required amount of training data. Though such
an approach does risk overfitting if not careful.

8 CONCLUSIONS
We have examined how entities can be identified in legal documents
in anM&A due diligence context.We have seen that utilizing a tradi-
tional NLP sequence tagging model is inferior to using a first-layer
to contextualize which sentences might have the desired entity.
Moreover, these two layer strategies exceed a single layer in terms
of effectiveness with substantially less data. We have also seen that
using various sampling strategies can yield much less computa-
tional cost but are only truly effective in a two layer approach. To
contrast our system architecture, we compare a state-of-the-art
deep learning method, Flair [2, 14], which we find to be marginally
more effective at a massively increased computational cost.

We also describe how our system architecture is deployed in
production and the varying considerations that our less than typi-
cal setup of allowing non-experts to train models places upon us.
We show that our production setup is such that requiring GPUs
and multiple days of training means that our user base would have
to wait longer and potentially pay more for models that are only
slightly better than what we have now. In summary, our production
environment is such that we require highly effective and computa-
tionally efficient algorithms lest we impact our users’ experience.
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