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ABSTRACT
We propose and validate a novel interleaved evaluation meth-
odology for two complementary information seeking tasks on
document streams: retrospective summarization and prospec-
tive notification. In the first, the user desires relevant and
non-redundant documents that capture important aspects
of an information need. In the second, the user wishes to
receive timely, relevant, and non-redundant update notifi-
cations for a standing information need. Despite superficial
similarities, interleaved evaluation methods for web rank-
ing cannot be directly applied to these tasks; for example,
existing techniques do not account for temporality or re-
dundancy. Our proposed evaluation methodology consists
of two components: a temporal interleaving strategy and a
heuristic for credit assignment to handle redundancy. By
simulating user interactions with interleaved results on sub-
mitted runs to the TREC 2014 tweet timeline generation
(TTG) task and the TREC 2015 real-time filtering task, we
demonstrate that our methodology yields system compar-
isons that accurately match the result of batch evaluations.
Analysis further reveals weaknesses in current batch evalua-
tion methodologies to suggest future directions for research.

1. INTRODUCTION
As primarily an empirical discipline, evaluation method-

ologies are vital to ensuring progress in information retrieval.
The ability to compare system variants and detect differ-
ences in effectiveness allows researchers and practitioners to
continually advance the state of the art. One such approach,
broadly applicable to any online service, is the traditional
A/B test [12]. In its basic setup, users are divided into
disjoint “buckets” and exposed to different treatments (e.g.,
algorithm variants); user behavior (e.g., clicks) in each of the
conditions is measured and compared to assess the relative
effectiveness of the treatments. As an alternative, infor-
mation retrieval researchers have developed an evaluation
methodology for web search based on interleaving results
from two different comparison systems into a single ranked
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list [8, 17, 6, 15, 7, 3, 16, 19], as well as recent extensions
to more than two system [20]. Instead of dividing the user
population into disjoint segments, all test subjects are ex-
posed to these interleaved results. Based on user clicks, it
is possible to assess the relative effectiveness of the two in-
put systems with greater sensitivity than traditional A/B
testing [17, 3], primarily due to the within-subjects design.

This paper explores interleaved evaluation for informa-
tion seeking on document streams. Although we focus on a
stream of social media updates (tweets), nothing in our for-
mulation is specific to tweets. In this context, we tackle two
complementary user tasks: In the retrospective summariza-
tion scenario, which is operationalized in the tweet time-
line generation (TTG) task at TREC 2014 [13], the user
desires relevant and non-redundant posts that capture key
aspects of an information need. In the prospective notifica-
tion scenario, operationalized in the real-time filtering task
(“scenario A”) at TREC 2015 [14], the user wishes to re-
ceive timely, relevant, and non-redundant updates (e.g., via
a push notification on a mobile phone).

The contribution of this paper is the development and val-
idation of an interleaved evaluation methodology for retro-
spective summarization and prospective notification on doc-
ument streams, consisting of two components: a temporal in-
terleaving strategy and a heuristic for credit assignment to
handle redundancy. Although we can draw inspiration from
the literature on interleaved evaluations for web search, pre-
vious techniques are not directly applicable to our tasks. We
face a number of challenges: the important role that time
plays in organizing and structuring system output, differ-
ing volumes in the number of results generated by systems,
and notions of redundancy that complicate credit assign-
ment. Our evaluation methodology addresses these com-
plexities and is validated using data from the TREC 2014
and 2015 Microblog evaluations. Specifically, we simulate
user interactions with interleaved results to produce a de-
cision on whether system A is better than system B, and
correlate these decisions with the results of batch evalua-
tions. We find that our methodology yields accurate system
comparisons under a variety of settings. Analysis also re-
veals weaknesses in current batch evaluation methodologies,
which is a secondary contribution of this work.

2. BACKGROUND AND RELATED WORK
We begin by describing our task models, which are illus-

trated in Figure 1. We assume the existence of a stream
of timestamped documents: examples include news articles
coming off an RSS feed or social media posts such as tweets.
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Figure 1: Illustration of our task models. At some
point in time (“now”), the user develops an informa-
tion need: she requests a retrospective summary of
what has happened thus far and desires prospective
notifications of future updates.

In this context, we consider a pair of complementary tasks:
suppose at some point in time the user develops an informa-
tion need, let’s say, about an ongoing political scandal. She
would like a retrospective summary of what has occurred up
until now, which might consist of a list of chronologically-
ordered documents that highlight important developments.
Once she has “come up to speed”, the user might wish to re-
ceive prospective notifications (on her mobile phone) regard-
ing future updates, for example, statements by the involved
parties or the emergence of another victim. Retrospective
summarization and prospective notification form two com-
plementary components of information seeking on document
streams. In both cases, users desire relevant and novel (non-
redundant) content—they, for example, would not want to
see multiple tweets that say essentially the same thing. In
the prospective notification case, the user additionally de-
sires timely updates—as close as possible to the actual oc-
currence of the “new development”. This, however, isn’t
particularly important for the retrospective case, since the
events have already taken place.

In this work, we present and evaluate an interleaved evalu-
ation methodology for the retrospective summarization and
prospective notification tasks described above. Although
there has been substantial work on interleaved evaluation
in the context of web search [8, 17, 6, 15, 7, 3, 16, 19], we
face three main challenges:

1. Temporality plays an important role in our tasks. In web
search, ranked lists from different systems can be arbitrar-
ily interleaved (and in some cases the relative ordering of
documents swapped) without significantly affecting users’
interpretation of the results. In our task, however, the
temporal ordering of documents is critical for the proper
interpretation of system output.

2. We need to interleave results of different lengths. In web
search, most interleaving strategies assume ranked lists
of equal length, while this is not true in our case—some
systems are more verbose than others.

3. We need to account for redundancy. In our tasks the
notion of novelty is very important and “credit” is only
awarded for returning non-redundant tweets. This cre-
ates a coupling effect between two systems where one’s
result might “mask” the novelty in the other. That is, a
system’s output becomes redundant only because the in-
terleaving algorithm injected a relevant document before
the document in question.

Nevertheless, there is a rich body of literature from which we
can draw inspiration. In particular, we employ a simulation-
based approach that is well-established for validating inter-
leaved evaluations [6, 7, 16].

Our retrospective summarization and prospective notifi-
cation tasks are grounded in the Microblog track evalua-

tions at TREC: specifically, the tweet timeline generation
(TTG) task at TREC 2014 [13] and the push notification sce-
nario (“scenario A”) in the real-time filtering task at TREC
2015 [14]. Although there has been a substantial amount
of work on developing systems that try to accomplish the
tasks we study (see the TREC overview papers for point-
ers into the literature), our focus is not on the development
of algorithms, but rather in evaluating system output. We
adopt the framework provided by these tracks: relevance
judgments and submitted runs are used in simulation studies
to validate our interleaved evaluation methodology.

3. TASK AND METRICS
We begin by describing evaluations from TREC 2014 and

2015 that operationalize our retrospective summarization
and prospective notification tasks.

3.1 Retrospective Summarization
Tweet timeline generation (TTG) was introduced at the

TREC 2014 Microblog track. The putative user model is as
follows: “At time T , I have an information need expressed by
query Q, and I would like a summary that captures relevant
information.” The system’s task is to produce a summary
timeline, operationalized as a list of non-redundant, chrono-
logically ordered tweets. It is imagined that the user would
consume the entire summary (unlike a ranked list, where the
user might stop reading at any time).

Redundancy was operationalized as follows: for every pair
of tweets, if the chronologically later tweet contains substan-
tive information that is not present in the earlier tweet, the
later tweet is considered novel; otherwise, the later tweet is
redundant with respect to the earlier one. Thus, redundancy
and novelty are antonyms; we use them interchangeably in
opposite contexts. Due to the temporal constraint, redun-
dancy is not symmetric. If tweet A precedes tweet B and
tweet B contains substantively similar information found in
tweet A, then B is redundant with respect to A, but not
the other way around. The task also assumes transitivity.
Suppose A precedes B and B precedes C: if B is redundant
with respect to A and C is redundant with respect to B,
then by definition C is redundant with respect to A.

The TTG assessment task can be viewed as semantic
clustering—that is, we wish to group relevant tweets into
clusters in which all tweets share substantively similar in-
formation. Within each cluster, the earliest tweet is novel;
all other tweets in the cluster are redundant with respect to
all earlier tweets. The track organizers devised a two-phase
assessment workflow that implements this idea. In the first
phase, all tweets are pooled and judged for relevance. In
the second phase, relevant tweets for each topic are then
clustered. We refer the reader to previous papers for more
details [13, 22], but the final product of the human annota-
tion process is a list of tweet clusters, each containing tweets
that represent a semantic equivalence class.

In TREC 2014, TTG systems were evaluated in terms
of set-based metrics (precision, recall, and F-score) at the
cluster level. Systems only received credit for returning one
tweet from each cluster—that is, once a tweet is retrieved,
all other tweets in the cluster are automatically considered
not relevant. In this study, we performed our correlation
analysis against recall, for reasons that will become appar-
ent later. The track evaluated recall in two different ways:
unweighted and weighted. In the relevance assessment pro-
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cess, tweets were judged as not relevant, relevant, or highly
relevant. For unweighted recall (also called S-recall [23] and
I-recall [18]), relevant and highly-relevant tweets were col-
lapsed to yield binary judgments and all clusters received
equal weight. For weighted recall, each cluster is assigned
a weight proportional to the sum of relevance grades from
every tweet in the cluster (relevant tweets receive a weight
of one and highly-relevant tweets receive a weight of two).

3.2 Prospective Notification
In the real-time filtering task at TREC 2015 [14], the goal

is for a system to identify interesting and novel content for
a user in a timely fashion, with respect to information needs
(called “interest profiles” but in actuality quite similar to
traditional ad hoc topics). In the push notification variant of
the task (“scenario A”), updates are putatively delivered in
real time as notifications to users’ mobile phones. A system
was allowed to return a maximum of ten tweets per day per
interest profile. The official evaluation took place over a
span of ten days during July 2015, where all participating
systems “listened” to Twitter’s live tweet sample stream to
complete the evaluation task; the interest profiles were made
available prior to the evaluation period.

The assessment workflow was the same as the TTG task
in TREC 2014 (see Section 3.1): relevance assessment us-
ing traditional pooling followed by semantic clustering. The
task likewise used three-way judgments: not relevant, rele-
vant, and highly relevant. We refer the reader to the TREC
overview paper for more details [14].

The two metrics used to evaluate system runs were ex-
pected latency-discounted gain (ELG) and normalized cu-
mulative gain (nCG). These two metrics are computed for
each interest profile for each day in the evaluation period
(explained in detail below). The final score of a run is the
average of daily scores across all interest profiles.

The expected latency-discounted gain (ELG) metric was
adapted from the TREC temporal summarization track [2]:

1

N

∑
G(t) (1)

where N is the number of tweets returned and G(t) is the
gain of each tweet: not relevant tweets receive a gain of 0, rel-
evant tweets receive a gain of 0.5, and highly-relevant tweets
receive a gain of 1.0.

As with the TTG task, redundancy is penalized: a system
only receives credit for returning one tweet from each cluster.
Furthermore, per the track guidelines, a latency penalty is
applied to all tweets, computed as MAX(0, (100 − d)/100),
where the delay d is the time elapsed (in minutes, rounded
down) between the tweet creation time and the putative
time the tweet was delivered. That is, if the system delivers a
relevant tweet within a minute of the tweet being posted, the
system receives full credit. Otherwise, credit decays linearly
such that after 100 minutes, the system receives no credit
even if the tweet was relevant.

The second metric is normalized cumulative gain (nCG):

1

Z
∑

G(t) (2)

where Z is the maximum possible gain (given the ten tweet
per day limit). The gain of each individual tweet is com-
puted as above (with the latency penalty). Note that gain
is not discounted (as in nDCG) because the notion of docu-
ment ranks is not meaningful in this context.

Due to the setup of the task and the nature of interest pro-
files, it is possible (and indeed observed empirically) that for
some days, no relevant tweets appear in the judgment pool.
In terms of evaluation metrics, a system should be rewarded
for correctly identifying these cases and not generating any
output. We can break down the scoring contingency table
as follows: If there are relevant tweets for a particular day,
scores are computed per above. If there are no relevant
tweets for that day, and the system returns zero tweets, it
receives a score of one (i.e., perfect score) for that day; oth-
erwise, the system receives a score of zero for that day. This
means that an empty run (a system that never returns any-
thing) may have a non-zero score.

4. INTERLEAVING METHODOLOGY
The development of an interleaved evaluation methodol-

ogy requires answering the following questions:

1. How exactly do we interleave the output of two systems
into one single output, in light of the challenges discussed
in Section 2?

2. How do we assign credit to each of the underlying sys-
tems in response to user interactions with the interleaved
results?

4.1 Interleaving Strategy
We begin by explaining why existing interleaving strate-

gies for web search cannot be applied to either retrospective
summarization or prospective notification. Existing strate-
gies attempt to draw results from the test systems in a “fair”
way: In balanced interleaving [8], for example, the algorithm
maintains two pointers, one to each input list, and draws
from the lagging pointer. Team drafting [17], on the other
hand, follows the analogy of selecting teams for a friendly
team-sports match and proceeds in rounds. Both explicitly
assume (1) that the ranked lists from each system are or-
dered in decreasing probability of relevance (i.e., following
the probability ranking principle) and (2) that the ranked
lists are of equal length. Both assumptions are problematic
because output in retrospective summarization and prospec-
tive notification must be chronologically ordered: a näıve
application of an existing web interleaving strategy in the
retrospective case would yield a chronologically jumbled list
of tweets that is not interpretable. In the prospective case,
we cannot “time travel” and push notifications “in the fu-
ture” and then “return to the past”. Furthermore, in both
our tasks system outputs can vary greatly in verbosity, and
hence the length of their results. This is an important as-
pect of the evaluation design as systems should learn when
to “keep quiet” (see Section 3.2). Most existing interleaving
strategies don’t tell us what to do when we run out of re-
sults from one system. For these reasons it is necessary to
develop a new interleaving strategy.

After preliminary exploration, we developed an interleav-
ing strategy, called temporal interleaving, where we simply
interleave the two runs by time. The strategy is easy to
implement yet effective, as we demonstrate experimentally.
Temporal interleaving works in the prospective case because
time is always “moving forward”. An example is shown in
Figure 2, where we have system A on the left and system B
on the right. The subscript of each tweet indicates its times-
tamp and the interleaved result is shown in the middle (note
that tweet t28 is returned by both systems). One potential
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Figure 2: Illustration of temporal interleaving. Note
that tweet t28 is returned by both systems.

downside of this strategy is that all retrieved documents
from both systems are included in the interleaved results,
which increases its length—we return to address this issue
in Section 5.3.

Our simple temporal interleaving strategy works as is for
TTG runs, since system outputs are ordered lists of tweets.
For push notifications, there is one additional wrinkle: which
timestamp do we use? Recall that in prospective notifica-
tion there is the tweet creation time and the push time (when
the system identified the tweet as being relevant). We base
interleaving on the push time because it yields a very sim-
ple implementation: we watch the output of two prospective
notification systems and take the output as soon as a re-
sult is emitted by either system. However, we make sure to
apply de-duplication: if a tweet is pushed by two systems
but at different times, it will only be included once in the
interleaved results.

4.2 User Interactions and Credit Assignment
In our interleaved evaluation methodology, output from

the two different test systems are combined using the tem-
poral interleaving strategy described above and presented
to the user. We assume a very simple interaction model in
which the user goes through the output (in chronological or-
der) from earliest to latest and makes one of three judgments
for each tweet: not relevant, relevant, and relevant but re-
dundant (i.e., the tweet is relevant but repeats information
that is already present in a previously-seen tweet). This ex-
tends straightforwardly to cases where we have graded rele-
vance judgments: for the relevant and redundant judgments,
the user also indicates the relevance grade. In retrospective
summarization, the user is interacting with static system
output, but in the prospective notification case, output is
presented to the user over a period of time. This is called
the “simple task”, for reasons that will become clear shortly.
We assume that users provide explicit judgments, in con-
trast to implicit feedback (i.e., click data) in the case of
interleaved evaluations for web search; we return to discuss
this issue in Section 5.4.

Based on user interactions with the interleaved results, we
must now assign credit to each of the test systems, which is
used to determine their relative effectiveness. Credit assign-
ment for the relevant label is straightforward: credit accrues
to the system that contributed the tweet to the interleaved
results (or to both if both systems returned the tweet). How-
ever, credit assignment for a tweet marked redundant is more
complex—we do not know, for example, if the redundancy

Relevant

Redundant

Not Relevant

Not Relevant

Relevant

+1

+1

+1

System A
credit

System B
credit

Redundant+0.66

Figure 3: Example of interleaving credit assignment
and redundancy handling.

was actually introduced by the interleaving. That is, the
interleaving process inserted a tweet (from the other run)
before this particular tweet that made it redundant.

We can illustrate this with the diagram in Figure 3. A dot-
ted border represents a tweet contributed by system A (on
the left) and a solid border represents a tweet contributed
by system B (on the right). Suppose the assessor judged
the tweets as they are labeled in the figure. The second and
fifth tweets are marked relevant, and so system B gets full
credit twice. Now let’s take a look at the third tweet, con-
tributed by system A, which is marked redundant—we can
confidently conclude in this case that the redundancy was
introduced by the interleaving, since there are no relevant
tweets above that are contributed by system A. Therefore,
we can give system A full credit for the third tweet. Now
let’s take a look at the sixth tweet: generalizing this line of
reasoning, the more that relevant tweets above are from sys-
tem B, the more likely that we’re encountering a “masking
effect” (all things being equal), where the redundancy is an
artifact of the interleaving itself. To capture this, we intro-
duce the following heuristic: the amount of credit given to
a system for a tweet marked redundant is multiplied by a
discount factor equal to the fraction of relevant and redun-
dant tweets above that come from the other system. In this
case, there are two relevant tweets above, both from system
B, and one redundant tweet from system A, so system A
receives a credit of 0.66.

More formally, consider an interleaved result S consisting
of tweets s1 . . . sn drawn from system A and system B. We
denote SA and SB as those tweets in S that come from sys-
tem A and B, respectively. For a tweet si judged redundant,
if si ∈ SA, then we multiple its gain by a discount factor DA

as follows:

DA(si) =
|{sj |j < i ∧ I(sj) ∧ sj ∈ SB}|

T (si)
(3)

T (si) = |{sj |j < i ∧ I(sj) ∧ sj ∈ SA}|+
|{sj |j < i ∧ I(sj) ∧ sj ∈ SB}|

(4)

where I(s) is an indicator function that returns one if the
user (previously) judged the tweet to be either relevant or
redundant, or zero otherwise. On the other hand, if si ∈ SB ,
we apply a discount factor DB that mirrors DA above (i.e.,
flipping subscripts A and B). If si is both in SA and SB ,
we apply both equations and give each system a different
amount of credit (summing up to one).

We emphasize, of course, that this way of assigning credit
for redundant judgments is a heuristic (but effective, from
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our evaluations). For further validation, we introduce an al-
ternative interaction model that we call the “complex task”:
in this model, the user still marks each tweet not relevant,
relevant, and redundant, but for each redundant tweet, the
user marks the source of the redundancy, i.e., which pre-
vious tweet contains the same information. With this ad-
ditional source of information, we can pinpoint the exact
source of redundancy and assign credit definitively (zero if
the source of redundancy was from the same run, and one
if from the other run). Of course, such a task would be
significantly more onerous (and slower) than just providing
three-way judgments, but this “complex task” provides an
upper bound that allows us to assess the effectiveness of our
credit assignment heuristic.

One final detail: In the prospective task, we still apply a
latency penalty to the assigned credit, as in ELG. Thus, in
the case of a tweet that was pushed by both systems, but at
different times, they will receive different amounts of credit.
In the interleaved results, of course, the tweet will appear
only once—from that single judgment we can compute the
credit assigned to each system.

To recap: we have presented a temporal interleaving strat-
egy to combine system output, introduced a model for how
users interact with the results, and devised a credit assign-
ment algorithm (including redundancy handling) that scores
the systems based on user interactions. From this, we arrive
at a determination of which system is more effective. Do
these decisions agree with the results of batch evaluations?
We answer this question with simulation studies based on
runs submitted to TREC 2014 (for retrospective summa-
rization) and TREC 2015 (for prospective notification).

5. SIMULATION RESULTS

5.1 Retrospective Summarization
To validate our interleaved evaluation methodology for

retrospective summarization, we conducted user simulations
using runs from the TREC 2014 TTG task. In total, 13
groups submitted 50 runs to the official evaluation. For each
pair of runs, we applied the temporal interleaving strategy
described above and simulated user interactions with the
“ground truth” cluster annotations. Each simulation experi-
ment comprised 67,375 pairwise comparisons, which we fur-
ther break down into 63,415 comparisons of runs from dif-
ferent groups (inter-group) and 3,960 comparisons between
runs from the same group (intra-group). Wang et al. [22]
were able to elicit two completely independent sets of clus-
ter annotations, which they refer to as the “official” and “al-
ternate” judgments. Thus, we were able to simulate user
interactions with both sets of clusters.

First, we ran simulations using binary relevance judg-
ments. Results are shown in Table 1. When comparing
simulation results (which system is better, based on assigned
credit) with the batch evaluation results (unweighted recall),
there are four possible cases:

• The compared runs have different batch evaluation results
and the simulation was able to detect those differences;
denoted (Agree, ∆).

• The compared runs have the same batch result and the
simulation assigned equal credit to both runs; denoted
(Agree, ¬∆).

• The compared runs have different batch evaluation results
but the simulation was not able to detect those differences;
denoted (Disagree, ∆).

• The compared runs have the same batch result and the
simulation falsely ascribed differences in effectiveness be-
tween those runs; denoted (Disagree, ¬∆).

In the first two cases, the batch evaluation and interleaved
evaluation results are consistent and the interleaving can
be said to have given “correct” results; this is tallied up as
(Agree, Total) in the results table. In the last two cases,
the batch evaluation and interleaved evaluation results are
inconsistent and the interleaving can be said to have given
“incorrect” results; this is tallied up as (Disagree, Total) in
the results table.1

With“official”and“alternate”clusters, there are four ways
we can run the simulations: simulate with official judgments,
correlate with batch evaluation results using official judg-
ments (official, official); simulate with alternate judgments,
correlate with batch evaluation results using alternative judg-
ments (alternate, alternate); as well as the symmetrical cases
where the simulation and batch evaluations are different, i.e.,
(official, alternate) and (alternate, official). Table 1 shows
all four cases, denoted by the first two columns. Finally,
the two vertical blocks of the table denote the results of the
“simple task”(simulated user provides three-way judgments)
and the “complex task” (simulated user additionally marks
the source of a redundant tweet).

There is a lot of information to unpack from Table 1. Fo-
cusing only on “all pairs” with the “simple task”, we see that
our simulation results agree with batch evaluation results
92%-93% of the time, which indicates that our interleaved
evaluation methodology is effective. The inaccuracies can
be attributed to the credit assignment heuristic for redun-
dant labels—this can be seen from the “complex task” block,
where accuracy becomes 100% if we ask the (simulated) user
to mark the source of the redundancy. Of course, this makes
the task unrealistically onerous, so we argue that our credit
assignment heuristic strikes the right balance between accu-
racy and complexity.

With the (official, official) and the (alternate, alternate)
conditions, we are simulating user interactions and comput-
ing batch results with the same cluster assignments. With
the other two conditions, we simulate with one set of clus-
ters and perform batch evaluations with the other—the dif-
ference between these two sets quantifies inter-assessor dif-
ferences. Results suggest that the effect of using different
assessors is relatively small—this finding is consistent with
that of Wang et al. [22], who confirmed the stability of the
TTG evaluation with respect to assessor differences.

The inter-group and intra-group comparisons suggest how
well our interleaved evaluation methodology would fare un-
der slightly different conditions. Runs by the same group
(intra-group) often share similar algorithms (perhaps vary-
ing in parameters), which often yield runs that are similar
in effectiveness (or the same). This makes differences more
difficult to detect, and indeed, Table 1 shows this to be the

1
Methodologically, our approach differs from many previous studies

that take advantage of click data. For example, Chapelle et al. [3]
studied only a handful of systems (far fewer than here) but across far
more queries, and hence are able to answer certain types of questions
that we cannot. Also, most previous studies do not consider system
ties, with He et al. [6] being an exception, but they do not explicitly
break out the possible contingencies as we do here.
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Simple Task Complex Task
Agree Disagree Agree Disagree

Simulation Judgment ∆ ¬∆ Total ∆ ¬∆ Total ∆ ¬∆ Total ∆ ¬∆ Total

All Pairs
official official 89.6% 3.7% 93.3% 3.0% 3.7% 6.7% 92.6% 7.4% 100.0% 0 0 0
alternate alternate 88.8% 3.6% 92.4% 3.5% 4.1% 7.6% 92.3% 7.7% 100.0% 0 0 0
official alternate 88.4% 3.6% 92.0% 3.8% 4.2% 8.0% 89.2% 5.6% 94.8% 3.1% 2.1% 5.2%
alternate official 88.7% 3.5% 92.2% 3.9% 3.9% 7.8% 89.2% 5.6% 94.8% 3.4% 1.8% 5.2%

Inter-Group Pairs Only
official official 91.1% 2.8% 93.9% 2.8% 3.3% 6.1% 93.9% 6.1% 100.0% 0 0 0
alternate alternate 90.3% 2.7% 93.0% 3.3% 3.7% 7.0% 93.6% 6.4% 100.0% 0 0 0
official alternate 89.9% 2.7% 92.6% 3.6% 3.8% 7.4% 90.7% 4.4% 95.1% 2.9% 2.0% 4.9%
alternate official 90.2% 2.6% 92.8% 3.7% 3.5% 7.2% 90.7% 4.4% 95.1% 3.2% 1.7% 4.9%

Intra-Group Pairs Only
official official 65.8% 18.1% 83.9% 5.8% 10.3% 16.1% 71.6% 28.4% 100.0% 0 0 0
alternate alternate 65.1% 17.8% 82.9% 6.5% 10.6% 17.1% 71.6% 28.4% 100.0% 0 0 0
official alternate 64.3% 17.9% 82.2% 7.3% 10.5% 17.8% 65.3% 24.0% 89.3% 6.3% 4.4% 10.7%
alternate official 64.7% 17.6% 82.3% 7.0% 10.7% 17.7% 65.3% 24.0% 89.3% 6.3% 4.4% 10.7%

Table 1: TTG simulation results for both the “simple task” and the “complex task”. The “Agree” columns
give the percentages of cases where the simulation results agree with the batch evaluation results, when the
runs actually differ (∆), and when the runs don’t differ (¬∆). The “Disagree” columns give the percentages
of cases where the simulation results disagree with the batch evaluation results, when the runs actually differ
(∆), and when the runs don’t differ (¬∆).
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Figure 4: Scatterplot showing batch vs. simulation
results for topic MB178.

case (lower agreement). In contrast, differences in effective-
ness in runs between groups (inter-group) are slightly easier
to detect, as shown by the slightly higher agreement.

To help further visualize our findings, a scatterplot of sim-
ulation results is presented in Figure 4 for a representative
topic, MB 178, under the all-pairs, (official, official) condi-
tion. Each point represents a trial of the simulation compar-
ing a pair of runs: the x coordinate denotes the difference
based on the batch evaluation, and the y coordinate denotes
the difference in assigned credit based on the simulation.
We see that there is a strong correlation between simulation
and batch results. Plots from other topics look very similar,
except differing in the slope of the trendline (since credit is
not normalized, but recall is).

The previous results did not incorporate graded relevance
judgments. Our next set of experiments examined this re-
finement: relevant tweets receive a credit of one and highly-
relevant tweets receive a credit of two. The simulated user
now indicates the relevance grade for the relevant and redun-

dant cases. There is, however, the question of which batch
metric to use: the official TREC evaluation used weighted
recall, where the weight of each cluster was proportional
to the sum of the relevance grades of tweets in the cluster.
This encodes the simple heuristic that“more discussed facets
are more important”, which seems reasonable, but Wang et
al. [22] found that this metric correlated poorly with hu-
man preferences, suggesting that cluster size is perhaps not
a good measure of importance. We ran simulations correlat-
ing against official weighted recall: the results were slightly
worse than those in Table 1, but still quite good. For ex-
ample, we achieved 90% accuracy in the (official, official)
condition on the simple task, as opposed to 93%.

However, given the findings of Wang et al., these simula-
tions might not be particularly meaningful. As an alterna-
tive, we propose a slightly different approach to computing
the cluster weights: instead of the sum of relevance grades
of tweets in the cluster, we use the highest relevance grade
of tweets in the cluster. That is, if a cluster contains a
highly-relevant tweet, it receives a weight of two; otherwise,
it receives a weight of one. This weighting scheme has the
effect that scores are not dominated by huge clusters. The
results of these simulations are shown in Table 2.

From these experiments, we see that accuracy remains
quite good, suggesting that our interleaved evaluation meth-
odology is able to take advantage of graded relevance judg-
ments. One important lesson here is that capturing “cluster
importance” in TTG is a difficult task, and that it is unclear
if present batch evaluations present a reasonable solution.
Without a well-justified batch evaluation metric, we lack
values against which to correlate our simulation outputs.
Thus, these results reveal a weakness in current batch eval-
uations (indicating avenues of future inquiry), as opposed to
a flaw in our interleaved evaluation methodology.

5.2 Prospective Notification
For prospective notification, we validated our interleaved

evaluation methodology using runs submitted to the TREC
2015 real-time filtering task (“scenario A”). In total, there
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Simple Task Complex Task
Agree Disagree Agree Disagree

Simulation Judgment ∆ ¬∆ Total ∆ ¬∆ Total ∆ ¬∆ Total ∆ ¬∆ Total

All Pairs
official official 89.9% 3.1% 93.0% 4.1% 2.9% 7.0% 93.3% 5.5% 98.8% 0.7% 0.5% 1.2%
alternate alternate 89.0% 3.0% 92.0% 4.7% 3.3% 8.0% 92.9% 5.7% 98.6% 0.8% 0.6% 1.4%
official alternate 88.6% 3.0% 91.6% 5.1% 3.3% 8.4% 89.9% 4.4% 94.3% 3.8% 1.9% 5.7%
alternate official 88.7% 3.0% 91.7% 1.3% 3.0% 8.3% 90.0% 4.4% 94.4% 4.0% 1.6% 5.6%

Inter-Group Pairs Only
official official 91.3% 2.2% 93.5% 3.9% 2.6% 6.5% 94.6% 4.2% 98.9% 0.6% 0.5% 1.1%
alternate alternate 90.4% 2.2% 92.6% 4.5% 2.9% 7.4% 94.2% 4.5% 98.7% 0.7% 0.6% 1.3%
official alternate 90.0% 2.1% 92.1% 4.9% 3.0% 7.9% 91.4% 3.3% 94.7% 3.5% 1.8% 5.3%
alternate official 90.2% 2.1% 92.3% 5.0% 2.7% 7.7% 91.5% 3.3% 94.7% 3.8% 1.5% 5.3%

Intra-Group Pairs Only
official official 66.5% 17.2% 83.7% 7.4% 8.9% 16.3% 72.5% 25.0% 97.5% 1.4% 1.1% 2.5%
alternate alternate 65.8% 16.8% 82.6% 8.2% 9.2% 17.4% 72.6% 25.0% 97.6% 1.4% 1.0% 2.4%
official alternate 64.7% 17.0% 81.7% 9.3% 9.0% 18.3% 66.3% 21.9% 88.2% 7.7% 4.1% 11.8%
alternate official 65.3% 16.9% 82.2% 8.6% 9.2% 17.8% 66.3% 22.0% 88.3% 7.6% 4.1% 11.7%

Table 2: TTG simulation results with graded relevance judgments, organized in the same manner as Table 1.

were 37 runs from 14 groups submitted to the official eval-
uation. This yields a total of 33,966 pairwise comparisons;
32,283 inter-group pairs and 1,683 intra-group pairs.

Simulation results (with graded relevance judgments) are
shown in Table 3 for correlations against ELG and in Table 4
for correlations against nCG. The table is organized in the
same manner as Tables 1 and 2, with the exception that
we only have one set of cluster annotations available, so no
“official” vs. “alternate” distinction.

Results of the simulation, shown under the rows marked
retaining “quiet days”, are quite poor. Analysis reveals that
this is due to the handling of days for which there are no
relevant tweets. Note that for days without any relevant
tweets, there are only two possible scores: one if the system
does not return any results, and zero otherwise. Thus, for
interest profiles with few relevant tweets, the score is highly
dominated by these “quiet days”. As a result, a system that
does not return anything scores quite highly; in fact, bet-
ter than most submitted runs [14]. To make matters worse,
since 2015 was the first year of this TREC evaluation, sys-
tems achieved high scores by simply returning few results,
in many cases for totally idiosyncratic reasons—for example,
the misconfiguration of a score threshold.

This property of the official evaluation is problematic for
interleaved evaluations since it is impossible to tell with-
out future knowledge whether there are relevant tweets for
a particular day. Consider the case when system A returns
a tweet for a particular day and system B does not return
anything, and let’s assume we know (based on an oracle)
that there are no relevant tweets for that day: according
to our interleaved evaluation methodology, neither system
would receive any credit. However, based on the batch eval-
uation, system B would receive a score of one for that day.
There is, of course, no way to know this at evaluation time
when comparing only two systems, and thus the interleaved
evaluation results would disagree with the batch evaluation
results. The extent of this disagreement depends on the
number of days across the topics for which there were no
relevant tweets. Since the interest profiles for the TREC
2015 evaluation had several quiet days each, our interleaved
evaluation methodology is not particularly accurate.

We argue, however, that this is more an artifact of the cur-
rent batch evaluation setup than a flaw in our interleaved
evaluation methodology per se; see Tan et al. [21] for fur-
ther discussion. As the track organizers themselves concede
in the TREC overview paper [14], it is not entirely clear
if the current handling of days with no relevant tweets is
appropriate. While it is no doubt desirable that systems
should learn when to “remain quiet”, the current batch eval-
uation methodology yields results that are idiosyncratic in
many cases.

To untangle the effect of these “quiet days” in our inter-
leaved evaluation methodology, we conducted experiments
where we simply discarded days in which there were no rel-
evant tweets. That is, if an interest profile only contained
three days (out of ten) that contained relevant tweets, the
score of that topic is simply an average of the scores over
those three days. We modified the batch evaluation scripts
to also take this into account, and then reran our simulation
experiments. The results are shown in Table 3 and Table 4
under the rows marked discarding “quiet days”. In this vari-
ant, we see that our simulation results are quite accurate,
which confirms that the poor accuracy of our initial results
is attributable to days where there are no relevant tweets.
Once again, this is an issue with the overall TREC evalu-
ation methodology, rather than a flaw in our interleaving
approach. These findings highlight the need for additional
research on metrics that better model sparse topics. In or-
der to remove this confound, for the remaining prospective
notification experiments, we discarded the “quiet days”.

Our credit assignment algorithm is recall oriented in that
it tries to quantify the total amount of relevant informa-
tion a user receives, and so it is perhaps not a surprise that
credit correlates with nCG. However, experiments show that
we also achieve good accuracy correlating with ELG (which
is precision oriented). It is observed in the TREC 2015
evaluation [14] that there is reasonable correlation between
systems’ nCG and ELG scores. There is no principled ex-
planation for this, as prospective notification systems could
very well make different precision/recall tradeoffs. However,
there is the additional constraint that systems are not al-
lowed to push more than ten tweets per day, so that a high-
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Simple Task Complex Task
Agree Disagree Agree Disagree

Condition ∆ ¬∆ Total ∆ ¬∆ Total ∆ ¬∆ Total ∆ ¬∆ Total

Retaining “quiet days”
All Pairs 45.6% 16.6% 62.2% 37.7% 0.1% 37.8% 45.6% 16.6% 62.2% 37.6% 0.2% 37.8%
Inter-Group Pairs 46.4% 15.3% 61.7% 38.2% 0.1% 38.3% 46.5% 15.3% 61.8% 38.1% 0.1% 38.2%
Intra-Group Pairs 29.0% 41.4% 70.4% 29.1% 0.5% 29.6% 29.5% 41.7% 71.2% 28.6% 0.2% 28.8%

Discarding “quiet days”
All Pairs 56.7% 34.8% 91.5% 8.4% 0.1% 8.5% 56.8% 34.8% 91.6% 8.3% 0.1% 8.4%
Inter-Group Pairs 58.0% 33.9% 91.9% 8.0% 0.1% 8.1% 58.1% 33.9% 92.0% 7.9% 0.1% 8.0%
Intra-Group Pairs 32.0% 52.7% 84.7% 14.8% 0.5% 15.3% 32.5% 53.0% 85.5% 14.3% 0.2% 14.5%

Table 3: Results of push notification simulations, correlating against ELG.

Simple Task Complex Task
Agree Disagree Agree Disagree

Condition ∆ ¬∆ Total ∆ ¬∆ Total ∆ ¬∆ Total ∆ ¬∆ Total

Retaining “quiet days”
All Pairs 52.8% 16.7% 69.5% 30.0% 0.5% 30.5% 52.8% 16.8% 69.6% 30.0% 0.4% 30.4%
Inter-Group Pairs 53.5% 15.3% 68.8% 30.7% 0.5% 31.2% 53.6% 15.4% 69.0% 30.6% 0.4% 31.0%
Intra-Group Pairs 38.3% 43.8% 82.1% 17.3% 0.6% 17.9% 37.8% 44.1% 81.9% 17.8% 0.3% 18.1%

Discarding “quiet days”
All Pairs 62.5% 35.2% 97.7% 2.1% 0.2% 2.3% 62.7% 35.3% 98.0% 2.0% 0 2.0%
Inter-Group Pairs 63.7% 34.1% 97.8% 2.1% 0.1% 2.2% 63.8% 34.3% 98.1% 1.9% 0 1.9%
Intra-Group Pairs 41.2% 55.4% 96.6% 2.9% 0.5% 3.4% 40.9% 55.8% 96.7% 3.3% 0 3.3%

Table 4: Results of push notification simulations, correlating against nCG.

Summarization Notification

All Pairs 92.8% 96.9%
Inter-Group Pairs 94.0% 97.9%
Intra-Group Pairs 73.7% 76.5%

Table 5: Lengths of interleaved results as a percent-
age of the sum of the lengths of the individual runs.

volume low-precision system would quickly use up its “daily
quota”. Additionally, we suspect that since TREC 2015 rep-
resented the first large-scale evaluation of this task, teams
have not fully explored the design space.

5.3 Assessor Effort: Output Length
We next turn our attention to two issues related to asses-

sor effort: the length of the interleaved system output (this
subsection) and the effort involved in providing explicit judg-
ments in our interaction model (next subsection).

One downside of our temporal interleaving strategy is that
the interleaved results are longer than the individual system
outputs. Exactly how much longer is shown in Table 5,
where the lengths of the interleaved results are shown as a
percentage of the sum of the lengths of the individual runs.
The lengths are not 100% because the individual system
outputs may contain overlap, and comparisons between runs
from the same group contain more overlap. Nevertheless,
we can see that temporal interleaving produces output that
is substantially longer than each of the individual system
outputs. This is problematic for two reasons: first, it means
a substantial increase in evaluation effort, and second, the
interleaving produces a different user experience in terms of
the verbosity of the system.

There is, however, a simple solution to this issue: after
temporal interleaving, for each result we flip a biased coin

and retain it with probability p. That is, we simply decide to
discard some fraction of the results. Figure 5 shows the re-
sults of these experiments. On the x axis we sweep across p,
the retention probability, and on the y axis we plot the sim-
ulation accuracy (i.e., agreement between simulation credit
and batch results). The left plot shows the results for ret-
rospective summarization using unweighted recall and the
(official, official) condition; the rest of the graphs look sim-
ilar and so we omit them for brevity. In the middle plot,
we show accuracy against ELG for prospective notification
and against nCG on the right (both discarding quiet days).
Since there is randomness associated with these simulations,
the plots represent averages over three trials.

We see that simulation results remain quite accurate even
if we discard a relatively large fraction of system output. For
the prospective task, accuracy is higher for lower p values
because there are many intra-group ties. At p = 0, accuracy
is simply the fraction of “no difference” comparisons. Based
on these results, an experiment designer can select a desired
tradeoff between accuracy and verbosity. With p around
0.5 to 0.6, we obtain an interleaved result that is roughly
the same length as the source systems—and in that region
we still achieve good prediction accuracy. It is even possi-
ble to generate interleaved results that are shorter than the
input runs. Overall, we believe that this simple approach
adequately addresses the length issue.

5.4 Assessor Effort: Explicit Judgments
Another potential objection to our interleaved evaluation

methodology is that our interaction model depends on ex-
plicit judgments for credit assignment, as opposed to implicit
judgments (i.e., clicks) in the case of interleaved evaluations
for web ranking. This issue warrants some discussion, be-
cause the ability to gather implicit judgments based on be-
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Figure 5: Simulation accuracy as a function of retention probability p for unweighted recall on retrospective
summarization (left); ELG (middle) and nCG (right) for prospective summarization.
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Figure 6: Simulation accuracy as a function of user judgment probability r for unweighted recall on retro-
spective summarization (left); ELG (middle) and nCG (right) for prospective summarization.

havioral data greatly expands the volume of feedback we can
easily obtain (e.g., from log data).

We have two responses: First, it is premature to explore
implicit interactions for our tasks. For web search, there is
a large body of work spanning over two decades that has
validated the interpretation of click data for web ranking
preferences—including the development of click models [1,
4], eye-tracking studies [5, 9], extensive user studies [10],
and much more [11]. In short, we have a pretty good idea
of how users interact with web search results, which justifies
the interpretation of click data. None of this exists for ret-
rospective summarization and prospective notification. Fur-
thermore, interactions with tweets in our case are more com-
plex: some tweets have embedded videos, images, or links.
There are many different types of clicks: the user can “ex-
pand” a tweet, thereby showing details of the embedded ob-
ject and from there take additional actions, e.g., play the
embedded video directly, click on the link to navigate away
from the result, etc. Not taking any overt action on a tweet
doesn’t necessary mean that the tweet is not relevant—the
succinct nature of tweets means that relevant information
can be quickly absorbed, perhaps without leaving any be-
havioral trails. Thus, any model of implicit interactions we
could develop at this point would lack empirical grounding.
More research is necessary to better understand how users
interact with retrospective summarization and prospective
notification systems. With a better understanding, we can
then compare models of implicit feedback with the explicit
feedback results presented here.

Our second response argues that in the case of prospective
notifications, an explicit feedback model might not actually
be unrealistic. Recall that such updates are putatively de-
livered via mobile phone notifications, and as such, they are

presented one at a time to the user—depending on the user’s
settings, each notification may be accompanied by an audi-
tory or physical cue (a chime or a vibration) to attract the
user’s attention. In most implementations today the noti-
fication can be dismissed by the user or the user can take
additional action (e.g., click on the notification to open the
mobile app). These are already quite explicit actions with
relatively clear user intent—it is not far-fetched to imag-
ine that these interactions can be further refined to provide
explicit judgments without degrading the user experience.

Nevertheless, the issue of assessor effort in providing ex-
plicit judgments is still a valid concern. However, we can
potentially address this issue in the same way as the length
issue discussed above. Let us assume that the user provides
interaction data with probability r. That is, as we run the
simulation, we flip a biased coin and observe each judgment
with only probability r. In the prospective notification case,
we argue that this is not unrealistic—the user “pays atten-
tion” to the notification message with probability r; the rest
of the time, the user ignores the update.

Figure 6 shows the results of these experiments (averaged
over three trials). On the x axis we sweep across r, the
interaction probability and on the y axis we plot the sim-
ulation accuracy. The left plot shows the results for ret-
rospective summarization using unweighted recall and the
(official, official) condition. In the middle plot, we show ac-
curacy against ELG for prospective notification and against
nCG on the right (once again, discarding quiet days in both
cases). Experiments show that we are able to accurately
decide the relative effectiveness of the comparison systems
even with limited user interactions.

The next obvious question, of course, is what if we com-
bined both the length analysis and interaction probabil-
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Figure 7: Simulation accuracy combining both retention probability p and interaction probability r.

ity analysis? These results are shown in Figure 7, orga-
nized in the same manner as the other graphs (also av-
eraged over three trials). For clarity, we only show re-
sults for all pairs. The interaction probability r is plotted
on the x axis, with lines representing retention probabil-
ity p = {0.2, 0.4, 0.6, 0.8, 1.0}. As expected, we are able
to achieve good accuracy, even while randomly discarding
system output, and with limited interactions. Given these
tradeoff curves, an experiment designer can strike the de-
sired balance between accuracy and verbosity.

6. CONCLUSIONS
In this paper, we describe and validate a novel interleaved

evaluation methodology for two complementary information
seeking tasks on document streams: retrospective summa-
rization and prospective notification. We present a tem-
poral interleaving strategy and a heuristic credit assignment
method based on a user interaction model with explicit judg-
ments. Simulations on TREC data demonstrate that our
evaluation methodology yields high fidelity comparisons of
the relative effectiveness of different systems, compared to
the results of batch evaluations.

Although interleaved evaluations for web search are rou-
tinely deployed in production environments, we believe that
our work is novel in that it tackles two completely different
information seeking scenarios. Retrospective summarization
and prospective notification are becoming increasingly im-
portant as users continue the shift from desktops to mobile
devices for information seeking. There remains much more
work, starting with a better understanding of user interac-
tions so that we can develop models of implicit judgment
and thereby greatly expand the scope of our evaluations,
but this paper takes an important first step.
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