@000

4 WATERLOO

Data-Intensive Distributed Computing
CS 431/631451/651 (Winter 2019)

Part 8: Analyzing Graphs, Redux (2/2)
November 20, 2018

Adam Roegiest
Kira Systems

These slides are available at http://roegiest.com/bigdata-2019w/

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Theme for Today:

How things work in the real world
(forget everything you’ve been told...)

(these are the mostly true events of Jimmy Lin’s Twitter tenure)

3 M)

33

the Ivory Tower...

Source: Wikipedia (All Souls College, Oxford)

What exactly might a data scientist do at
Twitter?

Real-Time
Aggs

Data-Powered Products

Analytics, B

Ad-Hoc
Analysis

data science

data products

They might have worked on...
— analytics infrastructure to support data science
— data products to surface relevant content to users

© tome (@comect Fpisc Busch et al. Earlybird: Real-Time I } o3 77 |

Search at Twitter. ICDE 2012 s s s w__—_—_—_ -

------------\
#Sochi2014

=" ;"’...;—‘44 S o Tweets
Mishne et al. Fast Data in the Era of Big Data: Twitter's Real- : #SochiProblems
Time Related Query Suggestion Architecture. SIGMOD 2013. ; Fcit

y Struggling with complex d
Sl fessid of Data Science 2/20 to relﬂ
#SochiFail
~------------

Promoted by Cloudera — C . L & & & & & & & &

.

TWEE

1,6 Leibert et al. Automatic Management of { Sochi 2014 & @Sochi2014
Partltloned Replicated Search Services. SoCC 2011 | 5
npose new T Clinton Paquin cnntonpaclJ| s Sochi Olympics 2014 ©2014Sochi

Simply stated, "The only p 1
muscle memory" @TheCh Wrpbl Coun 2014 & @sochi2014 ru

Y
Who to follow - Refresh - View all View conversation I . I
plotly @plotlygraphs | I —— — i~. Sochi Problems @SochiProblem :
+% Follow Promoted JNEIDE Republicans take debt ceHI
O ————— HILL Devapsrmey NYT Olympics @SochiNYT |
l A Brad Anderson @boorad ‘ I
Followed by Florian Leibert ... S
I /\/) - I & Retweeted by Alex Feinberg I i=. Sochi Problems @SochiProblems I
*2 Follow 4 Popehat @Popehat - 10h I
I . . . In a world in which few thilgRESEEG R Telo R {eI @ 1w |
I Sheila Morrissey @sheilaMorr I feed does '
“‘ : +2 Follow I Expand o T F R P R T
N Popular accounts - Find friends J Gupta et al. WTF: The Who to Follow Service at Twitter. WWW 2013
N ——— | a1 Ko|cz Large- Scale Machine Learning at Twitter. SIGMOD 2012
Trenc'=

«oym They might have worked on...
Jeane — gnalytics infrastructure to support data science

#Confe

veny — data products to surface relevant content to users

#Premiviuivucouu

ew

Source: https:/ W

circa ~2010
~150 people total
~60 Hadoop nodes
~6 people use analytics stack daily

circa ~2012

~1400 people total
10s of Ks of Hadoop nodes, multiple DCs
10s of PBs total Hadoop DW capacity
~100 TB ingest daily
dozens of teams use Hadoop daily
10s of Ks of Hadoop jobs daily

WTF

(\whioortoof ddlbowy)

Who to follow - refresh - view all Similar to @ryanhall3 - view all

freshbooks FreshBooks € - Follow @ RunnerSpace_com FRunnerSpace.com - Follow

Promoted - Followed by @zappos and others.

ed - Followe
7S alanwarms Alan Warms - Follow

&%, Followed by @fredwilson and others.

Mozzie21 Moises Henrigues - Follow sl s
can eat IMES

Car L

B chrislieto chris listo - Follow
I)!. v ¥ " "

#numbers
(Second half of 2012)

~175 million active users
~20 billion edges
42% edges bidirectional
Avg shortest path length: 4.05
40% as many unfollows as follows daily
WTF responsible for ~1/8 of the edges

Myers, Sharma, Gupta, Lin. Information Network or Social Network?
The Structure of the Twitter Follow Graph. WWW 2014.

Graphs are core to Twitter

S Aneesh Sharma @aneeshs - Aug 25

&4 Debugging babies is so much harder than
debugging distributed systems. Can't even
snooze the alerts...

I”

“structural” property

Twitter “verbs” = interactions

Graph-based recommendation systems
Why? Increase engagement!

%A% /
—HN N F

) \'\/ \

SR

8

In Four Acts...

r account recommendati

‘f‘f‘,}’

eraph for content recommendatien

@NO3/16

f
ViR

¢
//, /
7./
45786

A

05/3941,

In the beginning... the void

Act |
WTF and Cassovary

(circa 2010)

A~ Rpen ey u-.u-~~ P —

In the beglnnmg the v0|d
- Goal: bunld a recommendahon service qu1ck|y

Act I
WTF and Cassovar:

flockDB

(graph database)

Simple graph operations
Set intersection operations

Not appropriate for graph algorithms!

Real-Time
Aggs

Data-Powered Products

Analytics, BI
= —-

Dashboards

Ad-Hoc
Analysis

Okay, let’s use MapReduce!
But MapReduce sucks for graphs!

J

What about...:

HalLoop (vips 2010)

Twister (mapreduce workshop 2010)
Pregel/Giraph (siamop 2010)
Graphlab (uai2010)

Priter (socc 2011)

Datalog on Hyracks (rech report, 2012)
Spark/GraphX (nspi 2012, arxiv 2014)
PowerGraph (ospi2012)

GRACE (cipr 2013)

Mizan (Eurosys 2013)

MapReduce sucks for graph algorithmes...
Let’s build our own system!

Key design decision:
Keep entire graph in memory... on a single machine!

The runway argument

2 oy o B -
-~ . -
A S TR RN T Ly

Suppose: 10x10° edges
(src, dest) pairs: ~80 GB

18 x 8 GB DIMMS = 144 GB

18 x 16 GB

12 x 16 GB
12 x 32 GB

D
D

D

MMS = 288 GB

MMS =192 GB
MMS = 384 GB

_—

Cassovary

In-memory graph engine

Implemented in Scala .
Compact in-memory representations
But no compression :
Avoid JVM object overhead!
Open-source

Source: Wikipedia (Cassowary)

PageRank

“Semi-streaming” algorithm

Keep vertex state in memory, stream over edges
Each pass = one PageRank iteration
Bottlenecked by memory bandwidth

Convergence?

Don’t run from scratch... use previous values
A few passes are sufficient

“Circle of Trust”

Ordered set of important neighbors for a user

Result of egocentric random walk: Personalized PageRank!
Computed online based on various input parameters

“circle of trust”

One of the features used in search

SALSA for Recommendations

“authorities”

hubs scores:
similarity scores to u

authority scores:
recommendation scores for u

CoT of u \j

users LHS follow

FTR

25 I I I I I

1.5

0.5

SALSA Pers. PR Sim(followings) MCM Closure

Goel, Lin, Sharma, Wang, and Zadeh. WTF: The Who to Follow Service at Twitter. WWW 2013

[Blender]

What about new users?

Cold start problem: they need
recommendations the most!

- ﬁ

\

N/

I

Spring 2010: no WTF
seriously, WTF?

Summer 2010: WTF launched

<
o

” iir i
. !_“ —

N T

[

Goel et al. Dis(@milar Users on Twitter. MLG 2013.

Whaaaaaa?
Cassovary was a stopgap!

Hadoop provides:

Richer graph structure
Simplified production infrastructure
Scaling and fault-tolerance “for free”

Right choice at the time!

Wait, didn’t you say MapReduce sucks?

What exactly is the issue?

Random walks on egocentric 2-hop neighborhood
Naive approach: self-joins to materialize, then run algorithm

The shuffle is what kills you!

Graph algorithms in MapReduce

Tackle the shuffling problem!

Key insights:
Batch and “stich together” partial random walks*
Clever sampling to avoid full materialization

* Sarma et al. Estimating PageRank on Graph Streams. PODS 2008
Bahmani et al. Fast Personalized PageRank on MapReduce. SIGMOD 2011.

Throw in ML while we're at it...

Follow graph Retweet graph Favorite graph
Candidate :
. Trained Model
Generation
Candidates Classification Final Results

Lin and Kolcz. Large-Scale Machine Learning at Twitter. SIGMOD 2012.

- r g, i
»7,;_,, Isn’t the point of Twittecreal-time?
J&/SG'WS WTEF still dominated’by batch processing?

Source: Wikipedia (Motion Blur)

Observation: fresh recommendations get better engagement

Logical conclusion: generate recommendations in real time!

From batch to real-time recommendations:

Recommendations based on recent activity
“Trending in your network”

Inverts the WTF problem:

For this user, what recommendations to generate?
Given this new edge, which user to make recommendations to?

/1IN

UJ.-_)@

A

Why does this work?
A follows B’s because they’re interesting

B’s following C’s because “something’s happening”
(generalizes to any activity)

Gupta, Satuluri, Grewal, Gurumurthy, Zhabiuk, Li, and Lin. Real-Time Twitter Recommendation:
Online Motif Detection in Large Dynamic Graphs. VLDB 2014

Scale of the Problem
0O(108) vertices, O(10'°) edges
Designed for O(10%) events per second

Naive solutions:
Poll each vertex periodically
Materialize everyone’s two-hop neighborhood, intersect

Production solution:
Idea #1: Convert problem into adjacency list intersection
|dea #2: Partition graph to eliminate non-local intersections

Gupta, Satuluri, Grewal, Gurumurthy, Zhabiuk, Li, and Lin. Real-Time Twitter Recommendation:
Online Motif Detection in Large Dynamic Graphs. VLDB 2014

Single Node Solution

D “dynamic” structure:

. stores inverted adjacency lists
Who we’re recommending J Y

query C, return all B’s that link to it

C,
“influencers” B —> G
B, B, Bs B, —> G
A S “static” structure:

Who we’re making the stores inverted adjacency lists

recommendations to query B, return all A’s that link to it

Algorithm

D “dynamic” structure:

. stores inverted adjacency lists
Who we’re recommending J Y

query C, return all B’s that link to it

C,
R
AR 1. Receive B, to C,
“influencers” S
N 2. Query D for C,, get B,, B,, B;
B B
! B, 3 3. For each B,, B,, B;, query S
4. Intersect lists to compute A’s
A S “static” structure:

Who we’re making the stores inverted adjacency lists

recommendations to query B, return all A’s that link to it

Idea #1: Convert problem into adjacency list intersection

Distributed Solution

I 1. Fan out new edge to every node
2. Run algorithm on each partition
3. Gather results from each partition

Who we’re recommending :
Replicate on every node

) |
”mfluericers”

[

[

[

(W (R —— [
_Bl———Bz——— BB 0
[

[

I

|
|
|
|
b — = =A== = — [

Who we’re making the Part|t|on by A

recommendations to

|dea #2: Partition graph to eliminate non-local intersections

Production Status
Launched September 2013

Usage Statistics (Circa 2014)

Push recommendations to Twitter mobile users
Billions of raw candidates, millions of push notifications daily

Performance

End-to-end latency (from edge creation to delivery):
median 7s, p99 15s

Gupta, Satuluri, Grewal, Gurumurthy, Zhabiuk, Li, and Lin. Real-Time Twitter Recommendation:
Online Motif Detection in Large Dynamic Graphs. VLDB 2014

/ fas Acif
: “Gra phl et #

/,

[’ . =~ 4 A\ =
= | \', (C|rca 2014) & E:
I P
A\ \ ~ i \,;," /,
/\\ " = ,/;Q 5
, -./‘ WV

5 / a\
Fully bought into l;/he qotentlal of real-time...

but needed something more general

Focused specifically on the interaction graph

Source: flickr (https://www.flickr.com/photos/martinsfoto/6432093025/)

Data Model

RHS
tweets

typet _~ J

LHS

insertEdge(u, t,

getlLeftVertexEdges(u) getRightVertexEdges(t)
getlLeftVertexRandomEdges(u, k) getRightVertexRandomEdges(t, k)

Noteworthy design decisions
Make it simple, make it fast!

No partitioning
Focus on recent data, fits on a single machine

No deletes
Not meaningful w/ interaction data

No arbitrary edge metadata
Marginally better results at the cost of space — not worthwhile

Note: design supports revisiting these choices

l requests

APl Endpoint

Recommendation Engine

eftVertexEdges
etLeftVertexRandomEdges

fd ofd ofd L L

c c c c c

) @ @ @ @

S S S £ £

b0 Qo Qo o Y

n n n n n :

> > > ¢ > insertEdge
) w w cu)
o o o o o

= = = = =

Moving Window —

Recommendation Algorithm: Subgraph SALSA

What tweets might a

user be interested in? RHS
tweets

Random walk to
distribute probability
mass

Query User

C C C

Inject highly-ranked
tweets into user’s
home timeline

/
e - - -

Recommendation Algorithm: Similarity Query

RHS
tweets

LHS

Query User
Recommend |
users to follow \)(- Query Tweet
Recommend
Content
Efficient
sampling APl is Formulation of cosine
critical! similarity in terms of

getLeftVertexRandomEdges(u, k) random walks

getRightVertexRandomEdges(v, k)

C C

Visit prob. ~ sim

Goel et al. Discovering Similar Users on Twitter. MLG 2013.

Deployment Architecture

=

Graphlet

Graphlet

Graphlet

Graphlet

Production Status
Started serving production traffic early 2014

Dual Intel Xeon 6-cores (E5-2620v2) at 2.1 GHz

Cold startup: ingestion at O(10°) edges per sec from Kafka
Steady state: ingestion at O(10%) edges per sec

Space usage: O(10°) edges in < 30 GB

Sample recommendation algorithm: subgraph SALSA
500 QPS, p50 =19ms, p99 = 33ms

"

NS

Make thmgs as s!h‘ "' . \‘ ut not simpler.

\\

-

‘\\
e

E
!"l' Y s f
. PL - - \ \
E’i‘ 4 {) . o - # , “' \\\
e ¥ ’
X x £ - N \

fn*(
;13‘\“

Wlti{%sts of data, alg

!olurcI e:!ttps:/{wfljckr.

Vi S S iy

A

& : 2 Ko s 5
3, NS S AR 0 & ¢ r‘_
ine. Paul Klee (1922) watercolor ; and::g&;gvﬁ

between theory and practice. But, |
in practice, there is.” |

- Jan L.A. van de Snepscheut i

