

Data-Intensive Distributed Computing

CS 431/631 451/651 (Winter 2019)

Part 8: Analyzing Graphs, Redux (2/2) November 20, 2018

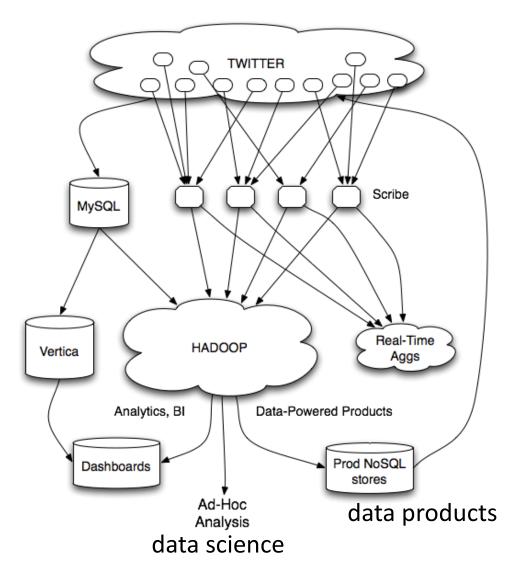
> Adam Roegiest Kira Systems

These slides are available at http://roegiest.com/bigdata-2019w/

Theme for Today:

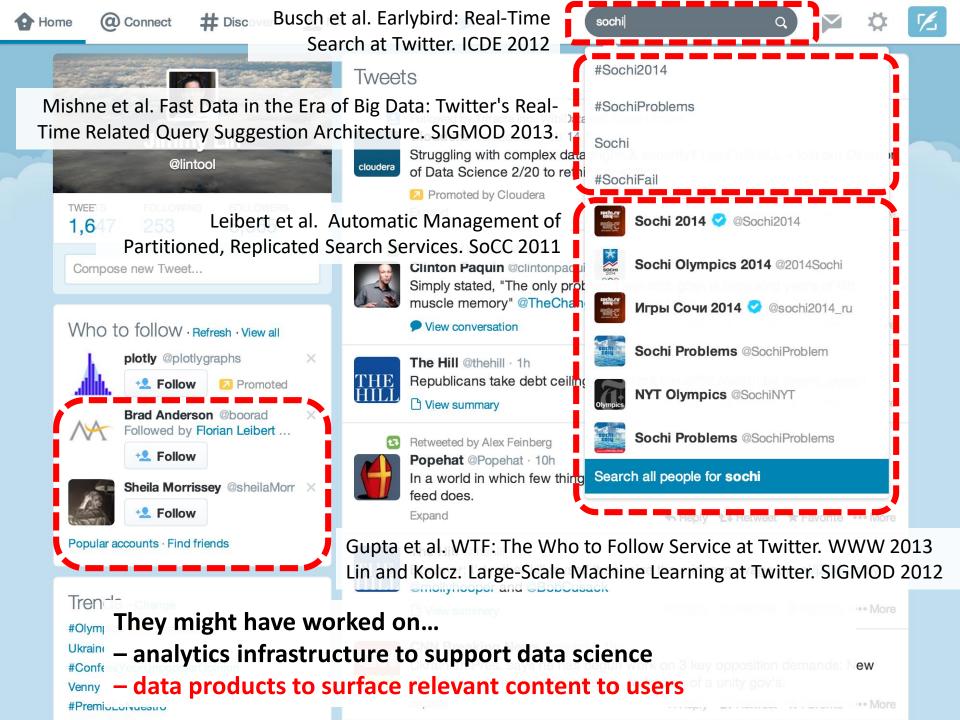
How things work in the real world (forget everything you've been told...)
(these are the mostly true events of Jimmy Lin's Twitter tenure)

What exactly might a data scientist do at Twitter?



They might have worked on...

- analytics infrastructure to support data science
- data products to surface relevant content to users



circa ~2010

~150 people total ~60 Hadoop nodes ~6 people use analytics stack daily

circa ~2012

~1400 people total

10s of Ks of Hadoop nodes, multiple DCs

10s of PBs total Hadoop DW capacity

~100 TB ingest daily

dozens of teams use Hadoop daily

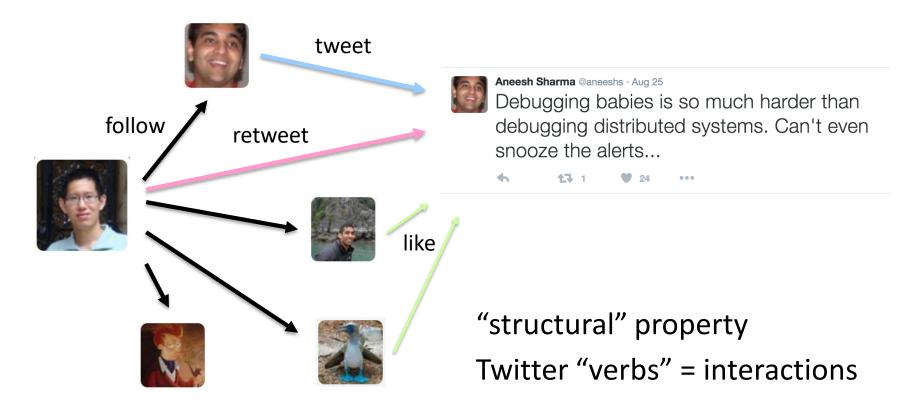
10s of Ks of Hadoop jobs daily

(\psi\boont\tagf\tagbox\))

#numbers

(Second half of 2012)

Graphs are core to Twitter

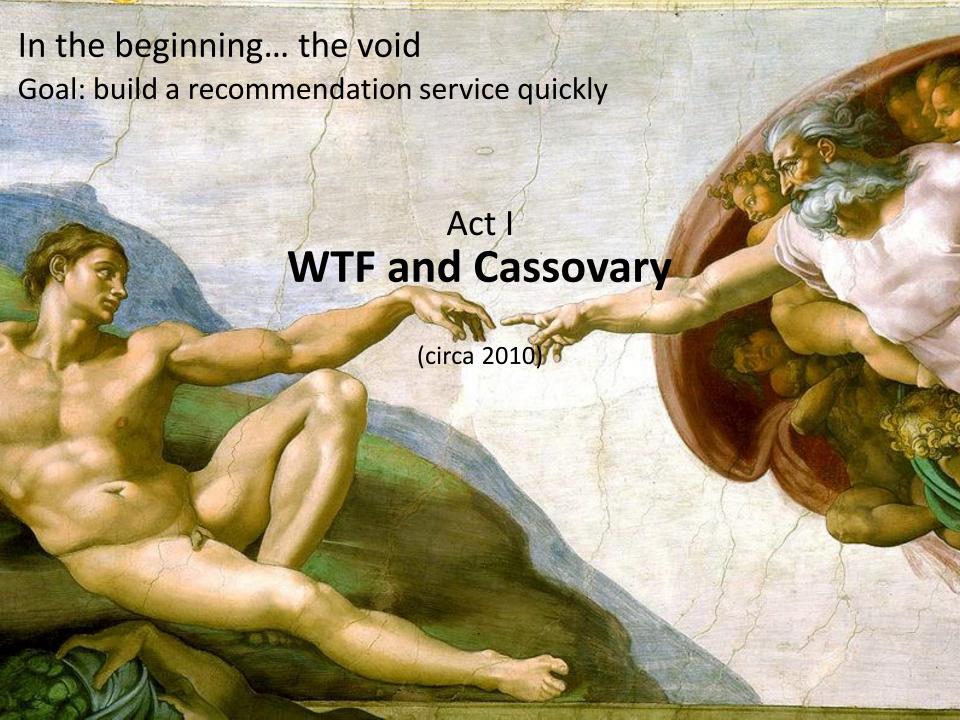


Graph-based recommendation systems Why? Increase engagement!

In the beginning... the void

Act | WTF and Cassovary

(circa 2010)

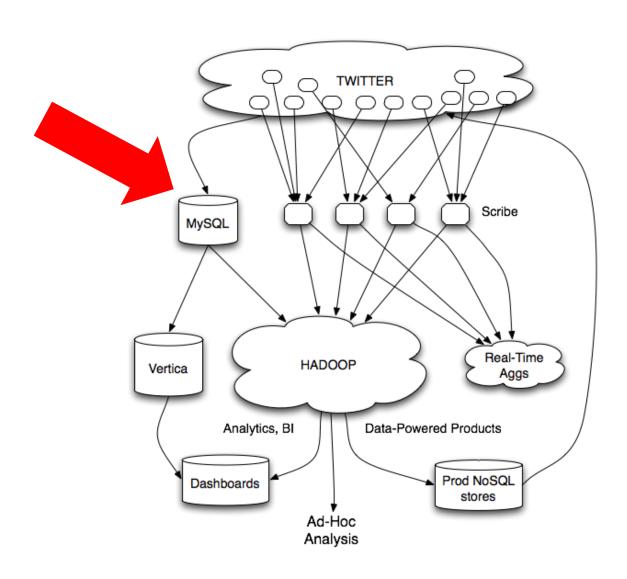


flockDB

(graph database)

Simple graph operations Set intersection operations

Not appropriate for graph algorithms!



Okay, let's use MapReduce! But MapReduce sucks for graphs!

What about...?

Haloop (VLDB 2010)

Twister (MapReduce Workshop 2010)

Pregel/Giraph (SIGMOD 2010)

Graphlab (UAI 2010)

Priter (Socc 2011)

Datalog on Hyracks (Tech report, 2012)

Spark/GraphX (NSDI 2012, arXiv 2014)

PowerGraph (OSDI 2012)

GRACE (CIDR 2013)

Mizan (EuroSys 2013)

• • •

MapReduce sucks for graph algorithms... Let's build our own system!

Key design decision:

Keep entire graph in memory... on a single machine!

Suppose: 10×10^9 edges (src, dest) pairs: ~80 GB

18 × 8 GB DIMMS = 144 GB 18 × 16 GB DIMMS = 288 GB 12 × 16 GB DIMMS = 192 GB 12 × 32 GB DIMMS = 384 GB

Cassovary

In-memory graph engine

Implemented in Scala

Compact in-memory representations

But no compression

Avoid JVM object overhead!

Open-source

PageRank

"Semi-streaming" algorithm

Keep vertex state in memory, stream over edges
Each pass = one PageRank iteration
Bottlenecked by memory bandwidth

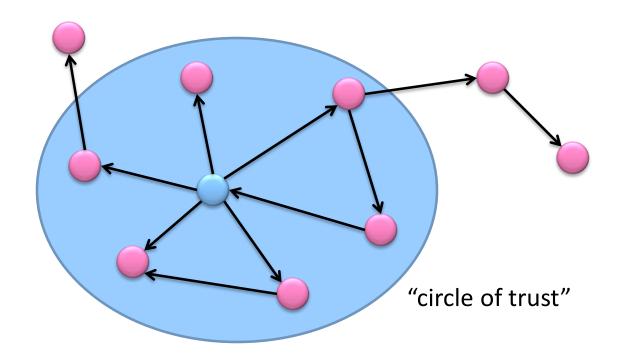
Convergence?

Don't run from scratch... use previous values
A few passes are sufficient

"Circle of Trust"

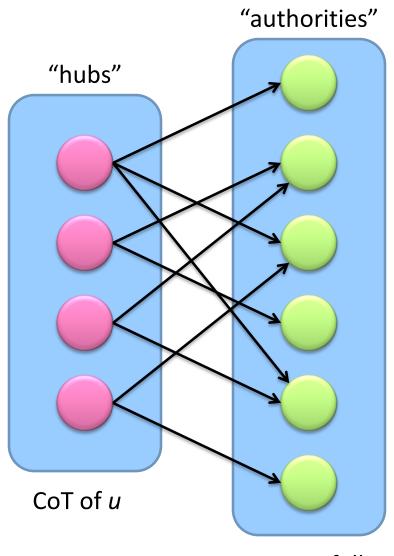
Ordered set of important neighbors for a user

Result of egocentric random walk: Personalized PageRank! Computed online based on various input parameters



One of the features used in search

SALSA for Recommendations



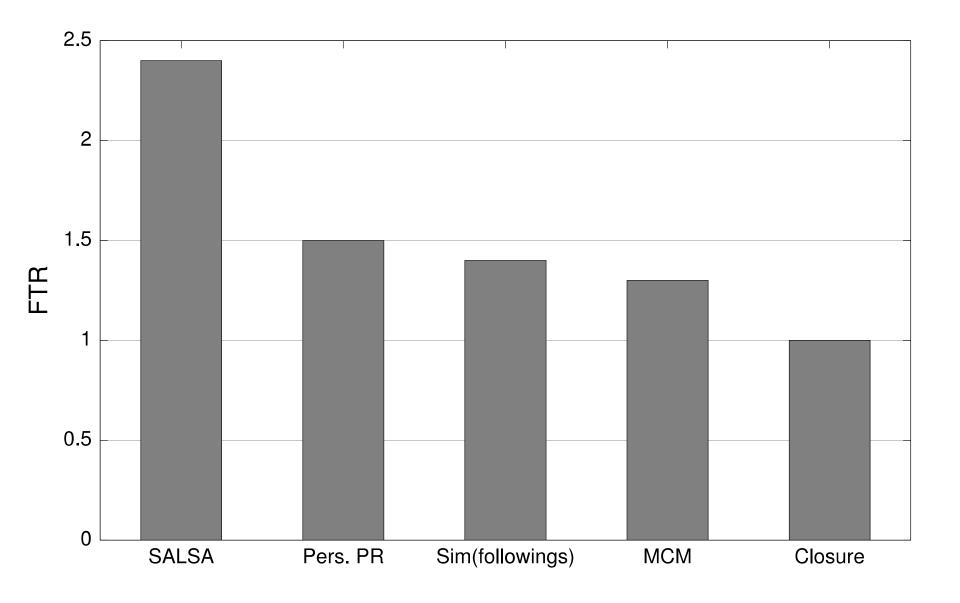
hubs scores:

similarity scores to *u*

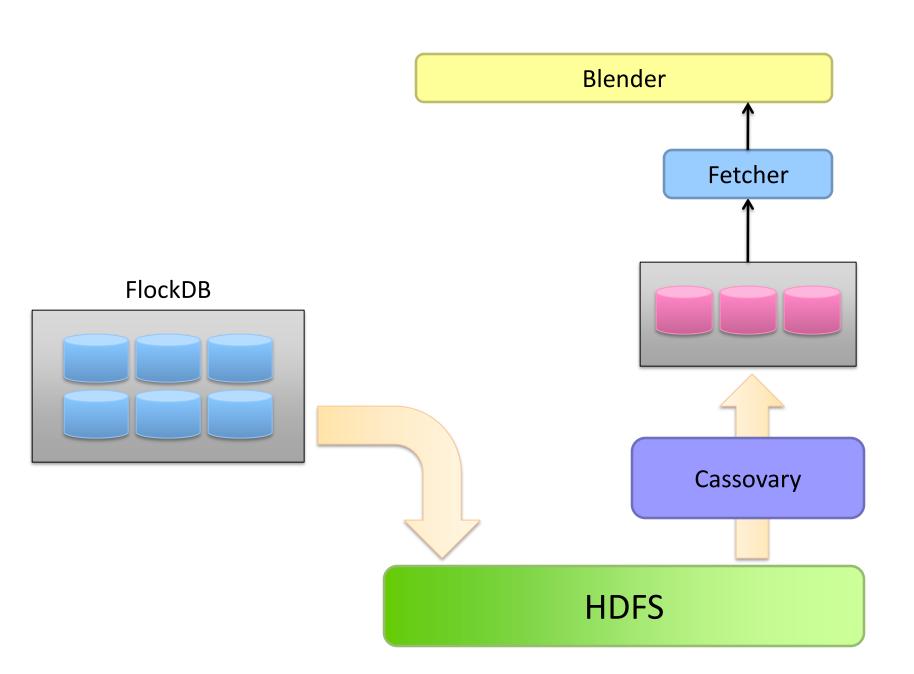
authority scores:

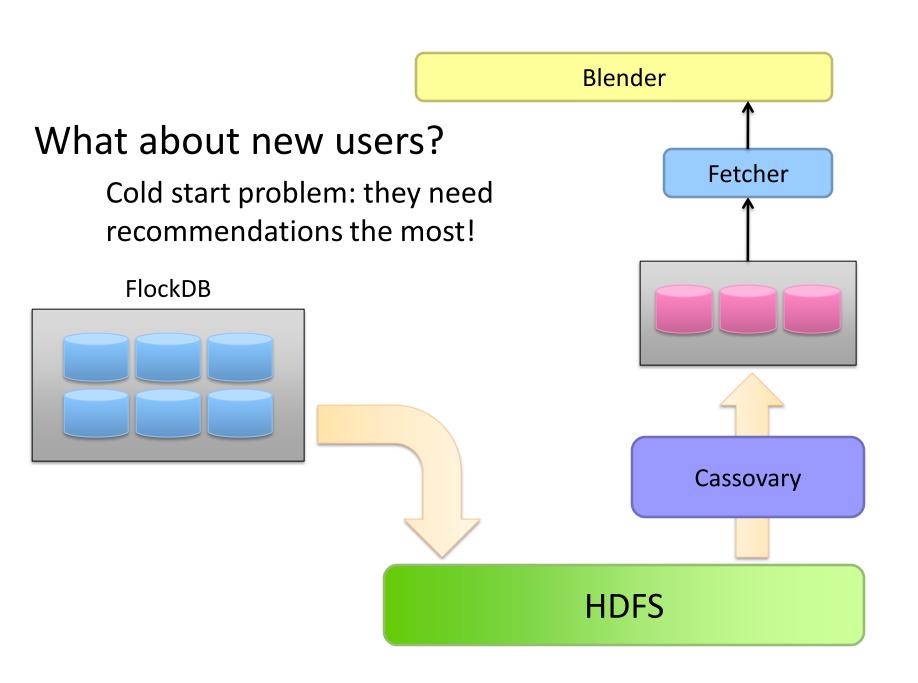
recommendation scores for u

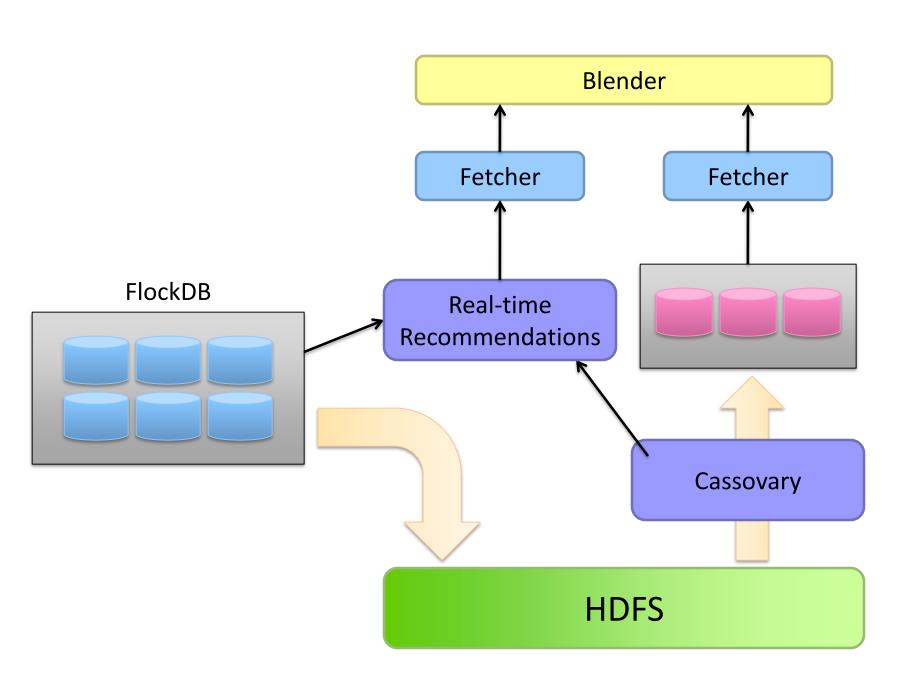
users LHS follow



Goel, Lin, Sharma, Wang, and Zadeh. WTF: The Who to Follow Service at Twitter. WWW 2013

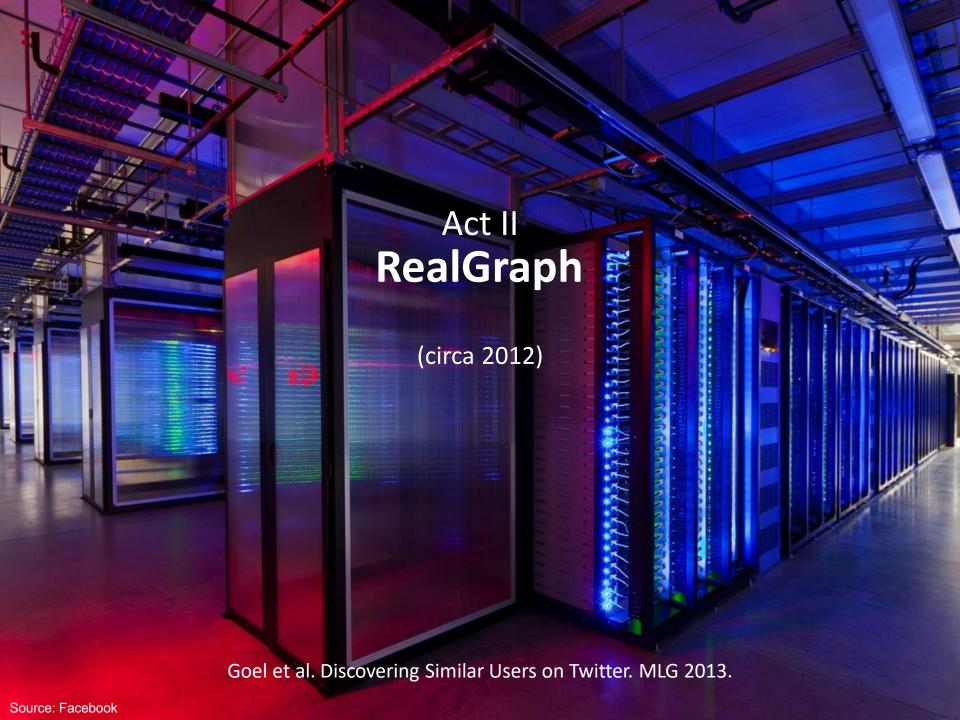






Spring 2010: no WTF seriously, WTF?

Summer 2010: WTF launched



Whaaaaaa?

Cassovary was a stopgap!

Hadoop provides:

Richer graph structure
Simplified production infrastructure
Scaling and fault-tolerance "for free"

Right choice at the time!

Wait, didn't you say MapReduce sucks?

What exactly is the issue?

Random walks on egocentric 2-hop neighborhood Naïve approach: self-joins to materialize, then run algorithm

The shuffle is what kills you!

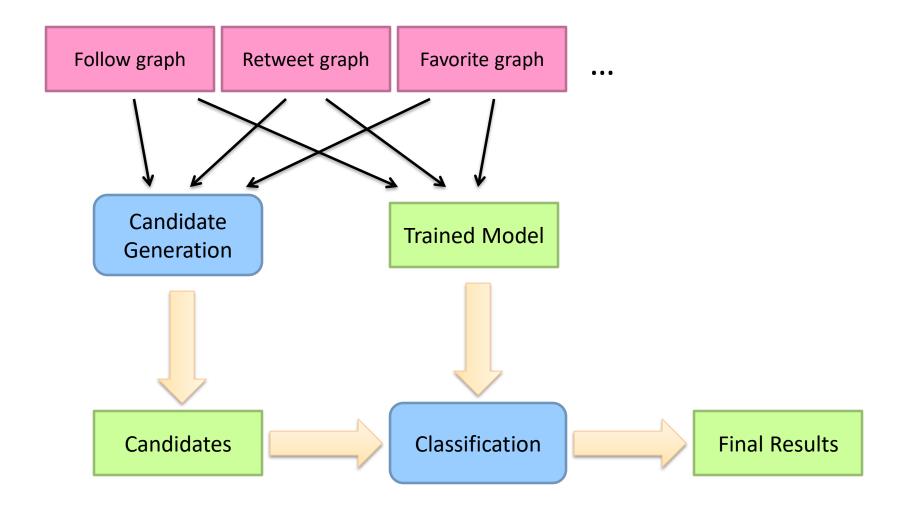
Graph algorithms in MapReduce

Tackle the shuffling problem!

Key insights:

Batch and "stich together" partial random walks*
Clever sampling to avoid full materialization

Throw in ML while we're at it...



Lin and Kolcz. Large-Scale Machine Learning at Twitter. SIGMOD 2012.

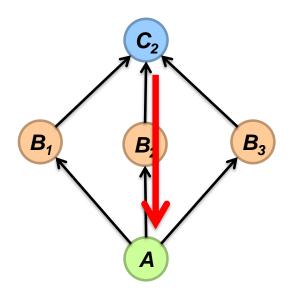
Observation: fresh recommendations get better engagement Logical conclusion: generate recommendations in real time!

From batch to real-time recommendations:

Recommendations based on recent activity "Trending in your network"

Inverts the WTF problem:

For this user, what recommendations to generate?
Given this new edge, which user to make recommendations to?



Why does this work?

A follows B's because they're interesting
B's following C's because "something's happening"
(generalizes to any activity)

Scale of the Problem

O(10⁸) vertices, O(10¹⁰) edges Designed for O(10⁴) events per second

Naïve solutions:

Poll each vertex periodically Materialize everyone's two-hop neighborhood, intersect

Production solution:

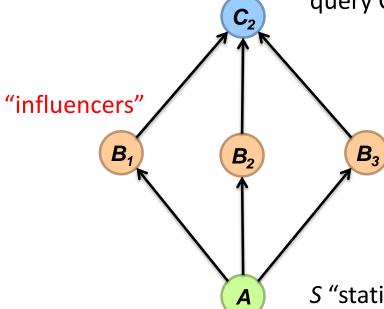
Idea #1: Convert problem into adjacency list intersection Idea #2: Partition graph to eliminate non-local intersections

Single Node Solution

Who we're recommending

D "dynamic" structure: stores inverted adjacency lists

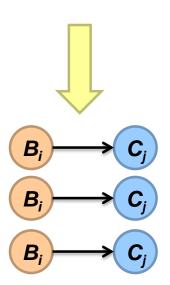
query C, return all B's that link to it



Who we're making the recommendations to

S "static" structure: stores inverted adjacency lists

query B, return all A's that link to it

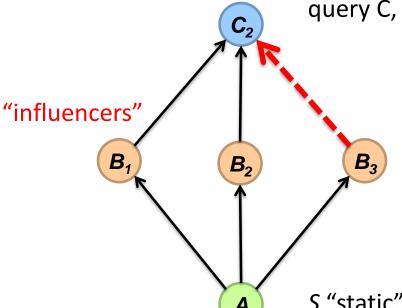


Algorithm

Who we're recommending

D "dynamic" structure: stores inverted adjacency lists

query C, return all B's that link to it



- 1. Receive B_3 to C_2
- 2. Query D for C_2 , get B_1 , B_2 , B_3
- 3. For each B_1 , B_2 , B_3 , query S
- 4. Intersect lists to compute A's

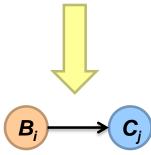
Who we're making the recommendations to

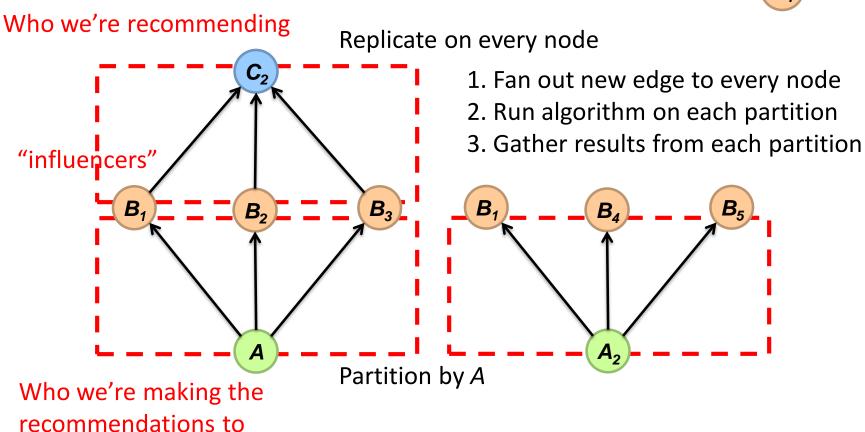
S "static" structure: stores inverted adjacency lists

query B, return all A's that link to it

Idea #1: Convert problem into adjacency list intersection

Distributed Solution





Idea #2: Partition graph to eliminate non-local intersections

Production Status

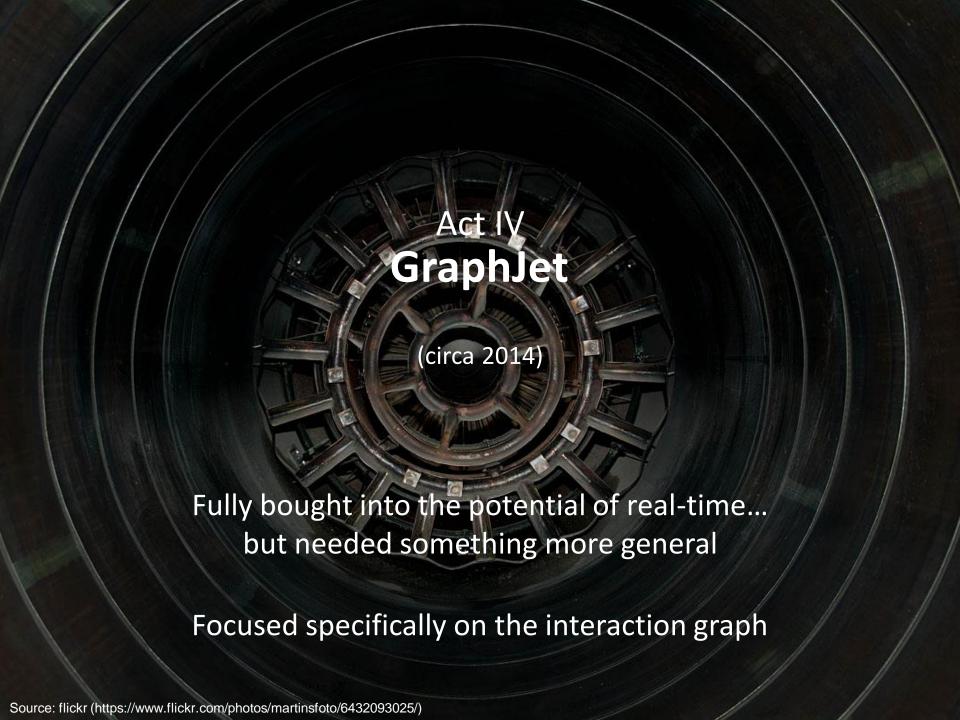
Launched September 2013

Usage Statistics (Circa 2014)

Push recommendations to Twitter mobile users
Billions of raw candidates, millions of push notifications daily

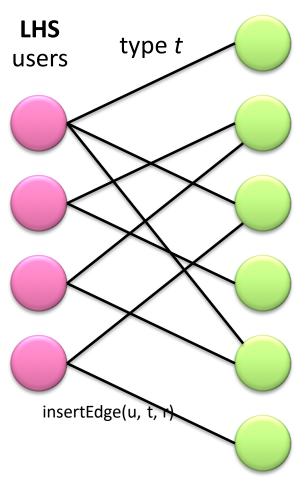
Performance

End-to-end latency (from edge creation to delivery): median 7s, p99 15s



Data Model

RHS tweets



getLeftVertexEdges(u)
getLeftVertexRandomEdges(u, k)

getRightVertexEdges(t)
getRightVertexRandomEdges(t, k)

Noteworthy design decisions

Make it simple, make it fast!

No partitioning

Focus on recent data, fits on a single machine

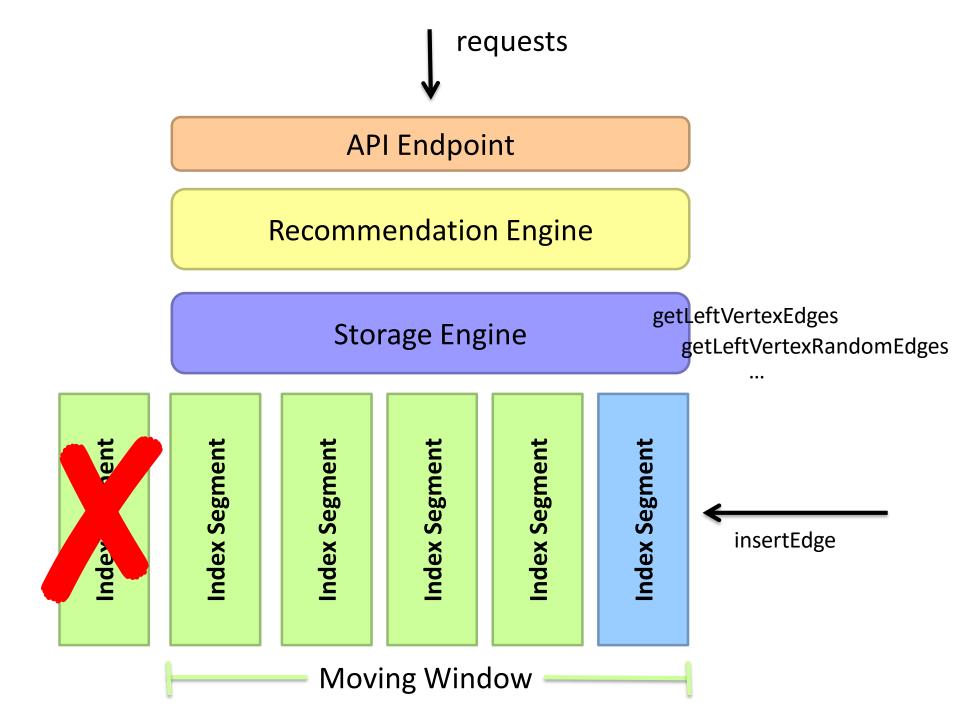
No deletes

Not meaningful w/ interaction data

No arbitrary edge metadata

Marginally better results at the cost of space – not worthwhile

Note: design supports revisiting these choices



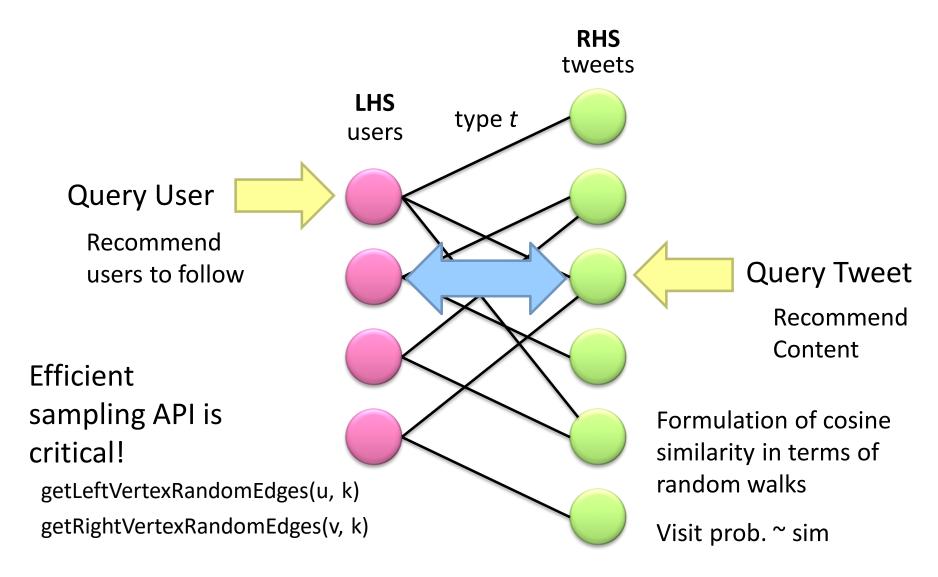
Recommendation Algorithm: Subgraph SALSA

What tweets might a user be interested in? RHS tweets LHS type t users **Query User** User's highly-ranked neighbors Materialize interaction subgraph

Random walk to distribute probability mass

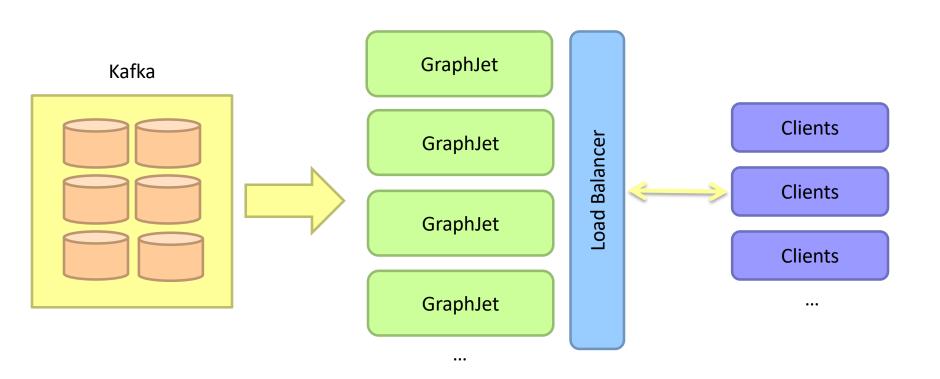
Inject highly-ranked tweets into user's home timeline

Recommendation Algorithm: Similarity Query



Goel et al. Discovering Similar Users on Twitter. MLG 2013.

Deployment Architecture



Production Status

Started serving production traffic early 2014

Dual Intel Xeon 6-cores (E5-2620 v2) at 2.1 GHz

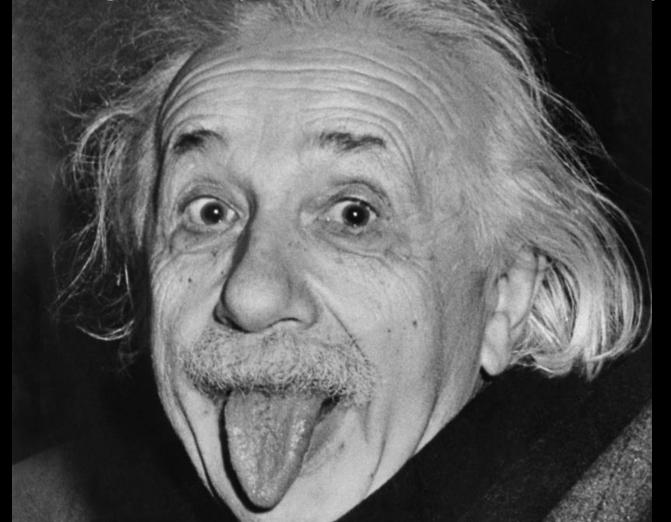
Cold startup: ingestion at O(10⁶) edges per sec from Kafka Steady state: ingestion at O(10⁴) edges per sec

Space usage: O(10⁹) edges in < 30 GB

Sample recommendation algorithm: subgraph SALSA 500 QPS, p50 = 19ms, p99 = 33ms

Takeaway lesson #01:

Make things as simple as possible, but not simpler.



With lots of data, algorithms don't really matter that much Why a complex architecture when a simple one suffices?

