
Data-Intensive Distributed Computing

Part 8: Analyzing Graphs, Redux (1/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Winter 2019)

Adam Roegiest
Kira Systems

March 21, 2019

These slides are available at http://roegiest.com/bigdata-2019w/



Graph Algorithms, again?
(srsly?)



What makes graphs hard?

Irregular structure
Fun with data structures!

Irregular data access patterns
Fun with architectures!

Iterations
Fun with optimizations!

✗



Characteristics of Graph Algorithms

Parallel graph traversals
Local computations

Message passing along graph edges

Iterations



n0

n3
n2

n1

n7

n6

n5

n4

n9

n8

Visualizing Parallel BFS



Given page x with inlinks t1…tn, where

C(t) is the out-degree of t

 is probability of random jump

N is the total number of nodes in the graph

X

t1

t2

tn

…

PageRank: Defined



n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

n2 n4 n3 n5 n1 n2 n3n4 n5

n2 n4n3 n5n1 n2 n3 n4 n5

n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

Map

Reduce

PageRank in MapReduce



Map

Reduce

PageRank BFS

PR/N d+1

sum min

PageRank vs. BFS



Characteristics of Graph Algorithms

Parallel graph traversals
Local computations

Message passing along graph edges

Iterations



reduce

map

HDFS

HDFS

Convergence?

BFS



Convergence?
reduce

map

HDFS

HDFS

map

HDFS

PageRank



MapReduce Sucks

Hadoop task startup time

Stragglers

Needless graph shuffling

Checkpointing at each iteration



reduce

HDFS

…

map

HDFS

reduce

map

HDFS

reduce

map

HDFS

Let’s Spark!



reduce

HDFS

…

map

reduce

map

reduce

map



reduce

HDFS

map

reduce

map

reduce

map

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

…



join

HDFS

map

join

map

join

map

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

…



join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey



join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

Cache!



PageRank	Performance	

17
1	

8
0
	

72
	

2
8
	

0	
20	
40	
60	
80	
100	
120	
140	
160	
180	

30	 60	

T
im

e
	p
e
r	
It
e
ra
ti
o
n
	(
s)
	

Number	of	machines	

Hadoop	

Spark	

Source: http://ampcamp.berkeley.edu/wp-content/uploads/2012/06/matei-zaharia-part-2-amp-camp-2012-standalone-programs.pdf

MapReduce vs. Spark



Characteristics of Graph Algorithms

Parallel graph traversals
Local computations

Message passing along graph edges

Iterations

Even faster?



Big Data Processing in a Nutshell

Partition

Replicate

Reduce cross-partition communication



Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization
Web pages: lexicographic sort of domain-reversed URLs



“Best Practices”

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

PageRank over webgraph
(40m vertices, 1.4b edges)

How much difference does it make?



+18%
1.4b

674m

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

PageRank over webgraph
(40m vertices, 1.4b edges)

How much difference does it make?



+18%

-15%

1.4b

674m

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

PageRank over webgraph
(40m vertices, 1.4b edges)

How much difference does it make?



+18%

-15%

-60%

1.4b

674m

86m

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

PageRank over webgraph
(40m vertices, 1.4b edges)

How much difference does it make?



Schimmy Design Pattern

Basic implementation contains two dataflows:
Messages (actual computations)
Graph structure (“bookkeeping”)

Schimmy: separate the two dataflows, shuffle only the messages
Basic idea: merge join between graph structure and messages

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

S T

both relations sorted by join key

S1 T1 S2 T2 S3 T3

both relations consistently partitioned and sorted by join key



join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey



+18%

-15%

-60%

1.4b

674m

86m

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

PageRank over webgraph
(40m vertices, 1.4b edges)

How much difference does it make?



+18%

-15%

-60%
-69%

1.4b

674m

86m

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

PageRank over webgraph
(40m vertices, 1.4b edges)

How much difference does it make?



Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization
Web pages: lexicographic sort of domain-reversed URLsWeb pages: lexicographic sort of domain-reversed URLs

Social networks: sort by demographic characteristics



Ugander et al. (2011) The Anatomy of the Facebook Social Graph.

Analysis of 721 million active 
users (May 2011)

54 countries w/ >1m active 
users, >50% penetration 

Country Structure in Facebook



Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization
Web pages: lexicographic sort of domain-reversed URLs

Social networks: sort by demographic characteristics
Web pages: lexicographic sort of domain-reversed URLs

Social networks: sort by demographic characteristics
Geo data: space-filling curves



Aside: Partitioning Geo-data



Geo-data = regular graph



Space-filling curves: Z-Order Curves



Space-filling curves: Hilbert Curves



Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization
Web pages: lexicographic sort of domain-reversed URLs

Social networks: sort by demographic characteristics
Geo data: space-filling curves

But what about graphs in general?



Source: http://www.flickr.com/photos/fusedforces/4324320625/



General-Purpose Graph Partitioning

Graph coarsening

Recursive bisection



Karypis and Kumar. (1998) A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.

General-Purpose Graph Partitioning



Karypis and Kumar. (1998) A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.

Graph Coarsening



Chicken-and-Egg

To coarsen the graph you need to identify dense local regions

To identify dense local regions quickly you to need traverse local edges
But to traverse local edges efficiently you need the local structure! 

To efficiently partition the graph, you need to already know what the partitions are!

Industry solution?



Big Data Processing in a Nutshell

Partition

Replicate

Reduce cross-partition communication



Partition



Partition

What’s the fundamental issue?



Characteristics of Graph Algorithms

Parallel graph traversals
Local computations

Message passing along graph edges

Iterations



Partition

FastFast

Slow



State-of-the-Art Distributed Graph Algorithms

Fast asynchronous 
iterations

Fast asynchronous 
iterations

Periodic 
synchronization



Source: Wikipedia (Waste container)

Graph Processing Frameworks



join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

Cache!



Pregel: Computational Model

Based on Bulk Synchronous Parallel (BSP)
Computational units encoded in a directed graph
Computation proceeds in a series of supersteps

Message passing architecture

Each vertex, at each superstep:
Receives messages directed at it from previous superstep

Executes a user-defined function (modifying state)
Emits messages to other vertices (for the next superstep)

Termination:
A vertex can choose to deactivate itself
Is “woken up” if new messages received

Computation halts when all vertices are inactive



superstep t

superstep t+1

superstep t+2

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.



Pregel: Implementation

Master-Worker architecture
Vertices are hash partitioned (by default) and assigned to workers

Everything happens in memory

Processing cycle:
Master tells all workers to advance a single superstep

Worker delivers messages from previous superstep, executing vertex computation
Messages sent asynchronously (in batches)

Worker notifies master of number of active vertices

Fault tolerance
Checkpointing

Heartbeat/revert



class ShortestPathVertex : public Vertex<int, int, int> {
void Compute(MessageIterator* msgs) {
int mindist = IsSource(vertex_id()) ? 0 : INF;
for (; !msgs->Done(); msgs->Next())

mindist = min(mindist, msgs->Value());
if (mindist < GetValue()) {

*MutableValue() = mindist;
OutEdgeIterator iter = GetOutEdgeIterator();
for (; !iter.Done(); iter.Next())
SendMessageTo(iter.Target(),

mindist + iter.GetValue());
}
VoteToHalt();

}
};

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Pregel: SSSP



class PageRankVertex : public Vertex<double, void, double> {
public:
virtual void Compute(MessageIterator* msgs) {
if (superstep() >= 1) {

double sum = 0;
for (; !msgs->Done(); msgs->Next())
sum += msgs->Value();

*MutableValue() = 0.15 / NumVertices() + 0.85 * sum;
}

if (superstep() < 30) {
const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeighbors(GetValue() / n);

} else {
VoteToHalt();

}
}

};

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Pregel: PageRank



class MinIntCombiner : public Combiner<int> {
virtual void Combine(MessageIterator* msgs) {

int mindist = INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());
Output("combined_source", mindist);

}

};

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Pregel: Combiners





Giraph Architecture

Master – Application coordinator
Synchronizes supersteps

Assigns partitions to workers before superstep begins

Workers – Computation & messaging
Handle I/O – reading and writing the graph

Computation/messaging of assigned partitions

ZooKeeper
Maintains global application state



Part 0

Part 1

Part 2

Part 3

Compute / 
Send

Messages

W
o

rk
er

 
1

Compute / 
Send

Messages

M
as

te
r

W
o

rk
er

 
0

In-memory 
graph

Send stats / iterate!

Compute/Iterate

2

W
o

rk
e

r 
1

W
o

rk
er

 
0 Part 0

Part 1

Part 2

Part 3

Output format

Part 0

Part 1

Part 2

Part 3

Storing the graph

3

Split 0

Split 1

Split 2

Split 3

W
o

rk
er

 
1

M
as

te
r

W
o

rk
er

 
0

Input format

Load / 
Send

Graph

Load / 
Send

Graph

Loading the graph

1

Split 4

Split 

Giraph Dataflow



Active Inactive

Vote to Halt

Received Message

Vertex Lifecycle

Giraph Lifecycle



Output

All Vertices 
Halted?

Input

Compute 
Superstep

No

Master 
halted?

No

Yes

Yes

Giraph Lifecycle



Giraph Example



5

1
5

2

5

5

2
5

5

5

5

5

1

2

Processor 1

Processor 2

Time

Execution Trace



join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

Cache!



State-of-the-Art Distributed Graph Algorithms

Fast asynchronous 
iterations

Fast asynchronous 
iterations

Periodic 
synchronization



Source: Wikipedia (Waste container)

Graph Processing Frameworks



GraphX: Motivation



GraphX = Spark for Graphs

Integration of record-oriented and graph-oriented processing

Extends RDDs to Resilient Distributed Property Graphs

class Graph[VD, ED] {
val vertices: VertexRDD[VD]
val edges: EdgeRDD[ED]

}



Property Graph: Example



Underneath the Covers



GraphX Operators

val vertices: VertexRDD[VD] 
val edges: EdgeRDD[ED] 
val triplets: RDD[EdgeTriplet[VD, ED]]

“collection” view

Transform vertices and edges
mapVertices
mapEdges
mapTriplets

Join vertices with external table

Aggregate messages within local neighborhood

Pregel programs



join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

Cache!



Source: Wikipedia (Japanese rock garden)


