
Data-Intensive Distributed Computing

Part 7: Mutable State (2/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Winter 2019)

Adam Roegiest
Kira Systems

March 19, 2019

These slides are available at http://roegiest.com/bigdata-2019w/

The Fundamental Problem

We want to keep track of mutable state in a scalable manner

MapReduce won’t do!

Assumptions:
State organized in terms of logical records

State unlikely to fit on single machine, must be distributed

Motivating Scenarios

Money shouldn’t be created or destroyed:
Alice transfers $100 to Bob and $50 to Carol

The total amount of money after the transfer should be the same

Phantom shopping cart:
Bob removes an item from his shopping cart…

Item still remains in the shopping cart
Bob refreshes the page a couple of times… item finally gone

Motivating Scenarios

People you don’t want seeing your pictures:
Alice removes mom from list of people who can view photos

Alice posts embarrassing pictures from Spring Break
Can mom see Alice’s photo?

Why am I still getting messages?
Bob unsubscribes from mailing list and receives confirmation

Message sent to mailing list right after unsubscribe
Does Bob receive the message?

Three Core Ideas

Partitioning (sharding)
To increase scalability and to decrease latency

Caching
To reduce latency

Replication
To increase robustness (availability) and to increase throughput

Why do these scenarios happen?

Need replica coherence protocol!

Source: Wikipedia (Cake)

Morale of the story: there’s no free lunch!

Source: www.phdcomics.com/comics/archive.php?comicid=1475

(Everything is a tradeoff)

Three Core Ideas

Partitioning (sharding)
To increase scalability and to decrease latency

Caching
To reduce latency

Replication
To increase robustness (availability) and to increase throughput

Why do these scenarios happen?

Need replica coherence protocol!

Relational Databases

… to the rescue!

Source: images.wikia.com/batman/images/b/b1/Bat_Signal.jpg

How do RDBMSes do it?

Partition tables to keep transactions on a single machine
Example: partition by user

What about transactions that require multiple machines?
Example: transactions involving multiple users

Transactions on a single machine: (relatively) easy!

Solution: Two-Phase Commit

Coordinator

subordinates

Okay everyone,
PREPARE! YES

YES

YES

Good.
COMMIT!

ACK!

ACK!

ACK!

DONE!

2PC: Sketch

Coordinator

subordinates

Okay everyone,
PREPARE! YES

YES

NO

ABORT!

2PC: Sketch

Coordinator

subordinates

Okay everyone,
PREPARE! YES

YES

YES

Good.
COMMIT!

ACK!

ACK!

2PC: Sketch

2PC: Assumptions and Limitations

Assumptions:
Persistent storage and write-ahead log at every node

WAL is never permanently lost

Limitations:
It’s blocking and slow

What if the coordinator dies?

Three Core Ideas

Partitioning (sharding)
To increase scalability and to decrease latency

Caching
To reduce latency

Replication
To increase robustness (availability) and to increase throughput

Why do these scenarios happen?

Need replica coherence protocol!

Replication possibilities

Update sent to a master
Replication is synchronous

Replication is asynchronous
Combination of both

Update sent to an arbitrary replica
Replication is synchronous(?)
Replication is asynchronous

Combination of both

Distributed Consensus
More general problem: addresses replication and partitioning

Time

… Paxos

Hi everyone,
let’s change

the value of x.
Hi everyone,

let’s execute a
transaction t.

Replication possibilities

Update sent to a master
Replication is synchronous

Replication is asynchronous
Combination of both

Update sent to an arbitrary replica
Replication is synchronous(?)
Replication is asynchronous

Combination of both

Guaranteed consistency with a consensus protocol

A buggy mess
“Eventual Consistency”

Consistency

Availability

(Brewer, 2000)

Partition tolerance

… pick two

CAP “Theorem”

CAP Tradeoffs

CA = consistency + availability
E.g., parallel databases that use 2PC

AP = availability + tolerance to partitions
E.g., DNS, web caching

Wait a sec, that
doesn’t sound right!

Source: Abadi (2012) Consistency Tradeoffs in Modern Distributed Database System Design. IEEE Computer, 45(2):37-42

Is this helpful?

CAP not really even a “theorem” because vague definitions
More precise formulation came a few years later

Abadi Says…

CAP says, in the presence of P, choose A or C
But you’d want to make this tradeoff even when there is no P

Fundamental tradeoff is between consistency and latency
Not available = (very) long latency

CP makes no sense!

Move over, CAP

PAC
If there’s a partition, do we choose A or C?

ELC
Otherwise, do we choose Latency or Consistency?

PACELC (“pass-elk”)

At the end of the day…

Guaranteed consistency with a consensus protocol

A buggy mess

“Eventual Consistency”

Morale of the story: there’s no free lunch!

Source: www.phdcomics.com/comics/archive.php?comicid=1475

(Everything is a tradeoff)

h = 0h = 2n – 1

Machine fails: What happens?

Solution: Replication
N = 3, replicate +1, –1

Covered!

Covered!

Image Source: http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

HBase

Three Core Ideas

Partitioning (sharding)
To increase scalability and to decrease latency

Caching
To reduce latency

Replication
To increase robustness (availability) and to increase throughput

Why do these scenarios happen?

Need replica coherence protocol!

Source: www.facebook.com/note.php?note_id=23844338919

MySQL

memcached

Read path:
Look in memcached
Look in MySQL
Populate in memcached

Write path:
Write in MySQL
Remove in memcached

Subsequent read:
Look in MySQL
Populate in memcached

Facebook Architecture

1. User updates first name from “Jason” to “Monkey”.

2. Write “Monkey” in master DB in CA, delete memcached entry in CA and VA.

3. Someone goes to profile in Virginia, read VA replica DB, get “Jason”.

4. Update VA memcache with first name as “Jason”.

5. Replication catches up. “Jason” stuck in memcached until another write!

Source: www.facebook.com/note.php?note_id=23844338919

MySQL

memcached

California

MySQL

memcached

Virginia

Replication lag

Facebook Architecture: Multi-DC

Source: www.facebook.com/note.php?note_id=23844338919

= stream of SQL statements

Solution: Piggyback on replication stream, tweak SQL

REPLACE INTO profile (`first_name`) VALUES ('Monkey’)
WHERE `user_id`='jsobel' MEMCACHE_DIRTY 'jsobel:first_name'

Facebook Architecture: Multi-DC

MySQL

memcached

California

MySQL

memcached

Virginia

Replication

Three Core Ideas

Partitioning (sharding)
To increase scalability and to decrease latency

Caching
To reduce latency

Replication
To increase robustness (availability) and to increase throughput

Why do these scenarios happen?

Need replica coherence protocol!

Source: Google

Now imagine multiple datacenters…

What’s different?

tl;dr -

Implement a global consensus protocol for every transaction
Guarantee consistency, but slow

Eventual consistency
Who knows?

Single row transactions
Easy to implement, obvious limitations

tl;dr -

Implement a global consensus protocol for every transaction
Guarantee consistency, but slow

Eventual consistency
Who knows?

Single row transactions
Easy to implement, obvious limitations

tl;dr -

Implement a global consensus protocol for every transaction
Guarantee consistency, but slow✗

✗
Entity groups

Groups of entities that share affinity
Example: user + user’s photos + user’s posts etc.

Source: Baker et al., CIDR 2011

Google’s Megastore

But what if that’s not enough?

Preserving commit order: example schema

Source: Llyod, 2012

Preserving commit order

Source: Llyod, 2012

Snapshot MapReduce and queries

Initial state

T1@ts1 INSERT INTO ads VALUES (2, “elkhound puppies”)

T2@ts2 INSERT INTO impressions VALUES (US, 2PM, 2)

Source: Llyod, 2012

Source: Llyod, 2012

Google’s Spanner

Features:
Full ACID translations across multiple datacenters, across continents!

External consistency (= linearizability):
system preserves happens-before relationship among transactions

How?
Given write transactions A and B, if A happens-before B, then

timestamp(A) < timestamp(B)

TrueTime → write timestamps

Source: Llyod, 2012

Why this works

Source: Llyod, 2012

TrueTime

Source: Llyod, 2012

Source: The Matrix

What’s the catch?

Three Core Ideas

Partitioning (sharding)
To increase scalability and to decrease latency

Caching
To reduce latency

Replication
To increase robustness (availability) and to increase throughput

Need replica coherence protocol!

Source: Wikipedia (Cake)

Morale of the story: there’s no free lunch!

Source: www.phdcomics.com/comics/archive.php?comicid=1475

(Everything is a tradeoff)

