
Data-Intensive Distributed Computing

Part 7: Mutable State (1/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Winter 2019)

Adam Roegiest
Kira Systems

March 14, 2019

These slides are available at http://roegiest.com/bigdata-2019w/



Structure of the Course

“Core” framework features 

and algorithm design

A
n

a
ly

z
in

g
T

e
x
t

A
n

a
ly

z
in

g
G

ra
p

h
s

A
n

a
ly

z
in

g

R
e

la
ti
o

n
a

l D
a
ta

D
a

ta
 M

in
in

g



The Fundamental Problem

We want to keep track of mutable state in a scalable manner

MapReduce won’t do!

Assumptions:
State organized in terms of logical records

State unlikely to fit on single machine, must be distributed

Want more? Take a real distributed systems course!



The Fundamental Problem

We want to keep track of mutable state in a scalable manner

Assumptions:
State organized in terms of logical records

State unlikely to fit on single machine, must be distributed



What do RDBMSes provide?

Relational model with schemas

Powerful, flexible query language

Transactional semantics: ACID

Rich ecosystem, lots of tool support



Source: www.flickr.com/photos/spencerdahl/6075142688/

RDBMSes: Pain Points



#1: Must design up front, painful to evolve



{
"token": 945842,
"feature_enabled": "super_special",
"userid": 229922,
"page": "null",
"info": { "email": "my@place.com" }

}

Is this really an integer?

Is this really null?

This should really be a list…

Flexible design doesn’t mean no design!

What keys? What values?

Consistent field names?

JSON to the Rescue!



Source: Wikipedia (Tortoise)

#2: Pay for ACID!



#3: Cost!

Source: www.flickr.com/photos/gnusinn/3080378658/



What do RDBMSes provide?

Relational model with schemas

Powerful, flexible query language

Transactional semantics: ACID

Rich ecosystem, lots of tool support

What if we want a la carte?

Source: www.flickr.com/photos/vidiot/18556565/



Features a la carte?

What if I’m willing to give up consistency for scalability?

What if I’m willing to give up the relational model for flexibility?

What if I just want a cheaper solution?

Enter… NoSQL!



Source: geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html



NoSQL

Source: Cattell (2010). Scalable SQL and NoSQL Data Stores. SIGMOD Record.

(Not only SQL)

1. Horizontally scale “simple operations”

2. Replicate/distribute data over many servers

3. Simple call interface

4. Weaker concurrency model than ACID

5. Efficient use of distributed indexes and RAM

6. Flexible schemas



“web scale”



(Major) Types of NoSQL databases

Key-value stores

Column-oriented databases

Document stores

Graph databases



Three Core Ideas

Partitioning (sharding)
To increase scalability and to decrease latency

Caching
To reduce latency

Replication
To increase robustness (availability) and to increase throughput



Source: Wikipedia (Keychain)

Key-Value Stores



Key-Value Stores: Data Model

Stores associations between keys and values

Values can be primitive or complex: often opaque to store
Primitives: ints, strings, etc.

Complex: JSON, HTML fragments, etc.

Keys are usually primitives
For example, ints, strings, raw bytes, etc.



Key-Value Stores: Operations

Optional operations:
Multi-get
Multi-put

Range queries
Secondary index lookups

Very simple API:
Get – fetch value associated with key

Put – set value associated with key

Consistency model:
Atomic single-record operations (usually)

Cross-key operations: who knows?



Key-Value Stores: Implementation

Non-persistent:
Just a big in-memory hash table

Examples: Redis, memcached

Persistent
Wrapper around a traditional RDBMS

Examples: Voldemort

What if data doesn’t fit on a single machine?



Simple Solution: Partition!

Partition the key space across multiple machines
Let’s say, hash partitioning

For n machines, store key k at machine h(k) mod n

Okay… But:
How do we know which physical machine to contact?

How do we add a new machine to the cluster?
What happens if a machine fails?



Clever Solution

Hash the keys

Hash the machines also!

Distributed hash tables!
(following combines ideas from several sources…)



h = 0h = 2n – 1



h = 0h = 2n – 1

Routing: Which machine holds the key?

Each machine holds pointers 
to predecessor and successor

Send request to any node, gets 
routed to correct one in O(n) hops

Can we do better?



h = 0h = 2n – 1

Routing: Which machine holds the key?

Each machine holds pointers 
to predecessor and successor

Send request to any node, gets 
routed to correct one in O(log n) hops

+ “finger table”
(+2, +4, +8, …)



h = 0h = 2n – 1

Routing: Which machine holds the key?

Simpler Solution

Service
Registry



h = 0h = 2n – 1

New machine joins: What happens?

How do we rebuild the predecessor, 
successor, finger tables?

Stoica et al. (2001). Chord: A Scalable Peer-to-peer 

Lookup Service for Internet Applications. SIGCOMM.

Cf. Gossip Protocols



h = 0h = 2n – 1

Machine fails: What happens?

Solution: Replication
N = 3, replicate +1, –1

Covered!

Covered!



Three Core Ideas

Partitioning (sharding)
To increase scalability and to decrease latency

Caching
To reduce latency

Replication
To increase robustness (availability) and to increase throughput



Another Refinement: Virtual Nodes

Don’t directly hash servers

Create a large number of virtual nodes, map to physical servers
Better load redistribution in event of machine failure

When new server joins, evenly shed load from other servers



Source: Wikipedia (Table)

Bigtable



Bigtable Applications

Gmail

Google’s web crawl

Google Earth

Google Analytics

Data source and data sink for MapReduce

HBase is the open-source implementation…



Data Model

A table in Bigtable is a sparse, distributed, persistent 
multidimensional sorted map

Map indexed by a row key, column key, and a timestamp
(row:string, column:string, time:int64) → uninterpreted byte array

Supports lookups, inserts, deletes
Single row transactions only

Image Source: Chang et al., OSDI 2006



Rows and Columns

Rows maintained in sorted lexicographic order
Applications can exploit this property for efficient row scans

Row ranges dynamically partitioned into tablets

Columns grouped into column families
Column key = family:qualifier

Column families provide locality hints
Unbounded number of columns

At the end of the day, it’s all key-value pairs!



row, column family, column qualifier, timestamp value

Key-Values



In Memory On Disk

Mutability Easy Mutability Hard

Small Big

Okay, so how do we build it?



Log Structured Merge Trees

MemStoreWrites Reads

What happens when we run out of memory?



Log Structured Merge Trees

MemStoreWrites Reads

Memory

Store

Disk

Immutable, indexed, persistent, key-value pairs

What happens to the read path?

Flush to disk



Log Structured Merge Trees

MemStoreWrites Reads

Memory

Store

Disk

Immutable, indexed, persistent, key-value pairs

What happens as more writes happen?

Merge

Flush to disk



Log Structured Merge Trees

MemStoreWrites Reads

Memory

Store

Disk

Immutable, indexed, persistent, key-value pairs

What happens to the read path?

Store Store Store

Merge

Flush to disk



Log Structured Merge Trees

MemStore

Memory

Writes Reads

Store

Disk

Store Store Store

Immutable, indexed, persistent, key-value pairs

What’s the next issue?

Merge

Flush to disk



Log Structured Merge Trees

MemStore

Memory

Writes Reads

Store

Disk

Store Store

Immutable, indexed, persistent, key-value pairs

Merge

Flush to disk



Log Structured Merge Trees

MemStore

Memory

Writes Reads

Store

Disk

Immutable, indexed, persistent, key-value pairs

Merge

Flush to disk



Log Structured Merge Trees

MemStore

Memory

Writes Reads

Store

Disk

Logging 
for 

persistence

Immutable, indexed, persistent, key-value pairs

Merge

One final component…

WAL

Flush to disk



Log Structured Merge Trees

MemStore

Memory

Writes Reads

Store

Disk

Store Store

Merge

Logging 
for 

persistence
WAL

Flush to disk

Immutable, indexed, persistent, key-value pairs

Compaction!

The complete picture…



Log Structured Merge Trees
The complete picture…

Okay, now how do we build a distributed version?



Bigtable building blocks

GFS

SSTable

Tablet

Tablet Server

Chubby



SSTable

Persistent, ordered immutable map from keys to values
Stored in GFS: replication “for free”

Supported operations:
Look up value associated with key

Iterate key/value pairs within a key range



Tablet

Dynamically partitioned range of rows
Comprised of multiple SSTables

SS
Ta

b
le

Tablet
aardvark - base

SS
Ta

b
le

SS
Ta

b
le

SS
Ta

b
le



Tablet Server

MemStore

Memory

Writes Reads

SSTable

Disk

SS
Ta

b
le

SS
Ta

b
le

Logging 
for 

persistence
WAL

Flush to disk

Immutable, indexed, persistent, key-value pairs

Compaction!



Table

Comprised of multiple tablets
SSTables can be shared between tablets

SS
Ta

b
le

Tablet
aardvark - base

SS
Ta

b
le

SS
Ta

b
le

SS
Ta

b
le

Tablet
basic - database

SS
Ta

b
le

SS
Ta

b
le



Tablet to Tablet Server Assignment

Each tablet is assigned to one tablet server at a time
Exclusively handles read and write requests to that tablet

What happens when a tablet grow too big?

We need a lock service!

Region Server

What happens when a tablet server fails?



Bigtable building blocks

GFS

SSTable

Tablet

Tablet Server

Chubby



Architecture

Client library

Bigtable master

Tablet servers



Bigtable Master

Roles and responsibilities:
Assigns tablets to tablet servers

Detects addition and removal of tablet servers
Balances tablet server load
Handles garbage collection
Handles schema changes

Tablet structure changes:
Table creation/deletion (master initiated)

Tablet merging (master initiated)
Tablet splitting (tablet server initiated)



Compactions

Minor compaction
Converts the memtable into an SSTable

Reduces memory usage and log traffic on restart

Merging compaction
Reads a few SSTables and the memtable, and writes out a new SSTable

Reduces number of SSTables

Major compaction
Merging compaction that results in only one SSTable

No deletion records, only live data



Table

Comprised of multiple tables
SSTables can be shared between tablets

SS
Ta

b
le

Tablet
aardvark - base

SS
Ta

b
le

SS
Ta

b
le

SS
Ta

b
le

Tablet
basic - database

SS
Ta

b
le

SS
Ta

b
le



Three Core Ideas

Partitioning (sharding)
To increase scalability and to decrease latency

Caching
To reduce latency

Replication
To increase robustness (availability) and to increase throughput



Image Source: http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

HBase



Source: Wikipedia (Japanese rock garden)


