
Data-Intensive Distributed Computing

Part 6: Data Mining (4/4)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Winter 2019)

Adam Roegiest
Kira Systems

March 12, 2019

These slides are available at http://roegiest.com/bigdata-2019w/

Structure of the Course

“Core” framework features

and algorithm design

A
n

a
ly

z
in

g
T

e
x
t

A
n

a
ly

z
in

g
G

ra
p

h
s

A
n

a
ly

z
in

g

R
e

la
ti
o

n
a

l D
a
ta

D
a

ta
 M

in
in

g

Theme: Similarity

Problem: find similar items
Offline variant: extract all similar pairs of objects from a large collection

Online variant: is this object similar to something I’ve seen before?

How similar are two items? How “close” are two items?

Equivalent formulations: large distance = low similarity
Lots of applications!

Problem: arrange similar items into clusters
Offline variant: entire static collection available at once

Online variant: objects incrementally available

Clustering Criteria

How to form clusters?
High similarity (low distance) between items in the same cluster
Low similarity (high distance) between items in different clusters

Cluster labeling is a separate (difficult) problem!

training

Model

Machine Learning Algorithm

testing/deployment

?

Supervised Machine Learning

Unsupervised Machine Learning

If supervised learning is function induction…
what’s unsupervised learning?

Learning something about the inherent structure of the data

What’s it good for?

Applications of Clustering

Clustering images to summarize search results

Clustering customers to infer viewing habits

Clustering biological sequences to understand evolution

Clustering sensor logs for outlier detection

Evaluation

Classification

Nearest neighbor search

How do we know how well we’re doing?

Clustering

Clustering

Source: Wikipedia (Star cluster)

Clustering

Clustering

Specify distance metric
Jaccard, Euclidean, cosine, etc.

Apply clustering algorithm

Compute representation
Shingling, tf.idf, etc.

Source: www.flickr.com/photos/thiagoalmeida/250190676/

Distance Metrics

1. Non-negativity:

2. Identity:

3. Symmetry:

4. Triangle Inequality

Distance Metrics

Distance: Jaccard

Given two sets A, B

Jaccard similarity:

Distance: Norms

Given

Euclidean distance (L2-norm)

Manhattan distance (L1-norm)

Lr-norm

Distance: Cosine

Idea: measure distance between the vectors

Thus:

Given

Representations

Representations

Unigrams (i.e., words)

Feature weights
boolean

tf.idf
BM25

…

Shingles = n-grams
At the word level

At the character level

(Text)

Representations

For recommender systems:
Items as features for users
Users as features for items

For log data:
Behaviors (clicks) as features

For graphs:
Adjacency lists as features for vertices

(Beyond Text)

Clustering Algorithms

Divisive (top-down)

K-Means

Gaussian Mixture Models

Agglomerative (bottom-up)

Hierarchical Agglomerative Clustering

Until there is only one cluster:
Find the two clusters ci and cj, that are most similar

Replace ci and cj with a single cluster ci ∪ cj

Start with each object in its own cluster

The history of merges forms the hierarchy

HAC in Action

Step 1: {1}, {2}, {3}, {4}, {5}, {6}, {7}
Step 2: {1}, {2, 3}, {4}, {5}, {6}, {7}
Step 3: {1, 7}, {2, 3}, {4}, {5}, {6}
Step 4: {1, 7}, {2, 3}, {4, 5}, {6}
Step 5: {1, 7}, {2, 3, 6}, {4, 5}
Step 6: {1, 7}, {2, 3, 4, 5, 6}
Step 7: {1, 2, 3, 4, 5, 6, 7}

Source: Slides by Ryan Tibshirani

Dendrogram

Source: Slides by Ryan Tibshirani

What’s the similarity between two clusters?
Single Linkage: similarity of two most similar members

Complete Linkage: similarity of two least similar members
Average Linkage: average similarity between members

Which two clusters do we merge?

Cluster Merging

Single Linkage
Uses maximum similarity (min distance) of pairs:

Source: Slides by Ryan Tibshirani

Complete Linkage
Uses minimum similarity (max distance) of pairs:

Source: Slides by Ryan Tibshirani

Average Linkage
Uses average of all pairs:

Source: Slides by Ryan Tibshirani

Link Functions

Average linkage:

Complete linkage:

Uses maximum similarity (min distance) of pairs
Weakness: “straggly” (long and thin) clusters due to chaining effect

Clusters may not be compact

Uses minimum similarity (max distance) of pairs
Weakness: crowding effect – points closer to other clusters than own cluster

Clusters may not be far apart

Single linkage:

Uses average of all pairs
Tries to strike a balance – compact and far apart
Weakness: similarity more difficult to interpret

MapReduce Implementation

What’s the inherent challenge?
Practicality as in-memory final step

Clustering Algorithms

Divisive (top-down)

K-Means

Gaussian Mixture Models

Agglomerative (bottom-up)

K-Means Algorithm

Iterate:
Assign each instance to closest centroid

Update centroids based on assigned instances

Select k random instances {s1, s2,… sk} as initial centroids

Compute centroids





Pick seeds

Reassign clusters

Reassign clusters




Compute centroids

Reassign clusters

Converged!

K-Means Clustering Example

Basic MapReduce Implementation

class Mapper {
def setup() = {
clusters = loadClusters()

}

def map(id: Int, vector: Vector) = {
emit(clusters.findNearest(vector), vector)

}
}

class Reducer {
def reduce(clusterId: Int, values: Iterable[Vector]) = {
for (vector <- values) {

sum += vector
cnt += 1

}
emit(clusterId, sum/cnt)

}
}

Basic MapReduce Implementation

Conceptually, what’s happening?
Given current cluster assignment, assign each vector to closest cluster

Group by cluster
Compute updated clusters

What’s the cluster update?
Computing the mean!

Remember IMC and other optimizations?

Implementation Notes

Standard setup of iterative MapReduce algorithms
Driver program sets up MapReduce job

Waits for completion
Checks for convergence

Repeats if necessary

Must be able keep cluster centroids in memory
With large k, large feature spaces, potentially an issue
Memory requirements of centroids grow over time!

Variant: k-medoids

How do you select initial seeds?
How do you select k?

Source: Wikipedia (Cluster analysis)

Clustering w/ Gaussian Mixture Models
Model data as a mixture of Gaussians

Given data, recover model parameters

Gaussian Distributions

Univariate Gaussian (i.e., Normal):

A random variable with such a distribution we write as:

Multivariate Gaussian:

A random variable with such a distribution we write as:

Source: Wikipedia (Normal Distribution)

Univariate Gaussian

Source: Lecture notes by Chuong B. Do (IIT Delhi)

Multivariate Gaussians

Number of components:

“Mixing” weight vector:

For each Gaussian, mean and covariance matrix:

Gaussian Mixture Models

Model Parameters

Varying constraints on co-variance matrices
Spherical vs. diagonal vs. full

Tied vs. untied

Problem: Given the data, recover the model parameters

Learning for Simple Univariate Case

Model selection criterion: maximize likelihood of data
Introduce indicator variables:

Likelihood of the data:

Given number of components:

Given points:

Learn parameters:

Problem setup:

EM to the Rescue!

Expectation Maximization
Guess the model parameters

E-step: Compute posterior distribution over latent
(hidden) variables given the model parameters

M-step: Update model parameters using posterior
distribution computed in the E-step

Iterate until convergence

We’re faced with this:

It’d be a lot easier if we knew the z’s!

E-step: compute expectation of z variables

M-step: compute new model parameters

EM for Univariate GMMs

Iterate:

Initialize:

z1,1

z2,1

z3,1

zN,1

z1,2

z2,2

z3,3

zN,2

z1,K

z2,K

z3,K

zN,K

…

…x1

x2

x3

xN

Map

Reduce

MapReduce Implementation

Map

Reduce

K-Means GMM

Compute distance of
points to centroids

Recompute new centroids

E-step: compute expectation
of z indicator variables

M-step: update values of
model parameters

K-Means vs. GMMs

Source: Wikipedia (k-means clustering)

Source: Wikipedia (Japanese rock garden)

