4 WATERLOO

Data-Intensive Distributed Computing
CS 431/631451/651 (Winter 2019)

Part 6: Data Mining (2/4)
March 5, 2019

Adam Roegiest
Kira Systems

These slides are available at http://roegiest.com/bigdata-2019w

@ @@ This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

The Task

label

Given: D — {(Xi,?ji)}?
1

(sparse) feature vector

X; = [5171,932,$3,

y €1{0,1}
Induce: f: X - Y

Such that loss is minimized

...,CI}d]

loss function

Typically, we consider functions of a parametric form:

1
arg min — ;af(il?i, 0),yi)

T— model parameters

MapReduce Implementation

T
1
t+1 t t .0t
9D = 60 — O~ U(f(xi50), p2)
1=0
— _
Y
o mappers
——
single reducer
compute partial gradient
mapper mapper mapper mapper

\ \ \
l

[reducer J

update model

iterate until convergence

Spark Implementation

val points = spark.textFile(...).map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>

p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

: ?
}.reduce((a,b) => a+b) , |fference s
w -= gradient What S the d
}
compute partial gradient
mapper mapper mapper mapper

\ \ \
l

[reducer]

update model

et T A p _ =
" ﬁﬁe’dia(wétersnde) 7 . "N N l]

Batch vs. Online

Gradient Descent

1 T
9D = 00 — o= N VU(F(xi:6), i)
1=0
“batch” learning: update model after considering all training instances

Stochastic Gradient Descent (SGD)
0 01 — IV f(x;0),)

“online” learning: update model after considering
each (randomly-selected) training instance

In practice... just as good!
Opportunity to interleaving prediction and learning!

Practical Notes

Order of the instances important!
Most common implementation: randomly shuffle training instances

Single vs. multi-pass approaches

Mini-batching as a middle ground

We’ve solved the iteration problem!
What about the single reducer problem?

" Ensembles

o ;
Z T iy Trat o S

.-j:ﬁ'm;_.‘. > o
Source: Wikipedia (Orchestra)

Ensemble Learning

i dependent
Learn muﬂiple models, combine results from

differernodels to make prediction

Common implementation:

Train classifiers on different input partitions of the data
Embarrassingly parallel!

Combining predictions:
Majority voting
Simple weighted voting:

mn
y = arg I;leaéc]; P (y|x)
Model averaging

Ensemble Learning

i dependent
Learn muﬂiple models, combine results from

differernodels to make prediction

Why does it work?

If errors uncorrelated, multiple classifiers being wrong is less likely
Reduces the variance component of error

MapReduce Implementation
0D = 0% = OVU(f(x0),)

MapReduce Implementation
0D = 0% = OVU(f(x0),)

MapReduce Implementation
00D = 0% =y OVU(f(x07),)

How do we output the model?

Option 1: write model out as “side data”
Option 2: emit model as intermediate output

What about Spark?
9D 00 — OV (x;00),)

RDDIT]

|

mapPartitions
f: (Iterator[T])
= Iterator[U]

l learner

RDD[U]

previous Pig dataflow previous Pig dataflow

I I D

map
Classifier \\ W W
Training

reduce

| label, feature vector | |
Pig storage
function

¥ ¥ ¥

model model model
| feature vector | feature vector
M d kl ng model —> UDF model —> UDF
Predictions l prediction l prediction

Just like any other parallel Pig dataflow

Classifier Training

training = load ‘training.txt’ using SVMLightStorage()
as (target: int, features: mapl]);

store training into ‘model/’
using FeaturesLRClassifierBuilder();

T

Logistic regression + SGD (L2 regularization)
Pegasos variant (fully SGD or sub-gradient)

Want an ensemble?

training = foreach training generate
label, features, RANDOM() as random;
training = order training by random parallel 5;

Making Predictions

define Classify ClassifyWithLR(‘model/’);

data = load ‘test.txt’ using SVMLightStorage()
as (target: double, features: map(]);

data = foreach data generate target,
Classify(features) as prediction;

Want an ensemble?

define Classify ClassifyWithEnsemble(‘model/’,
‘classifier.LR’, ‘vote’);

Sentiment Analysis Case Study

Binary polarity classification: {positive, negative} sentiment
Use the “emoticon trick” to gather data

Data

Test: 500k positive/500k negative tweets from 9/1/2011
Training: {1m, 10m, 100m} instances from before (50/50 split)

Features:
Sliding window byte-4grams

Models + Optimization:

Logistic regression with SGD (L2 regularization)
Ensembles of various sizes (simple weighted voting)

Source: Lin and Kolcz. (2012) Large-Scale Machine Learning at Twitter. SIGMOD.

Accuracy

Diminishing returns...

0.82

1minstances G ENSemMbles with 10m examples
10m instances G ; . e
100m instances G better than 100m single classifier!

1 1 1 3 5 7 9 11 13 15 17 19

Number of Classifiers in Ensemble
W_/ NG NG /
— —

single classifier 10m ensembles 100m ensembles

0.81

Supervised Machine Learning

Machine Learning Algorithm

training 1 testing/deployment

B
Q&

Evaluation
How do we know how well we’re doing?

Why isn’t this enough?
Induce: f: X =Y

Such that loss is minimized

1
arg min — ;af(ﬂ?z', 0),yi)

We need end-to-end metrics!
Obvious metric: accuracy

Why isn’t this enough?

Predicted

Positive

Negative

Metrics

Actual

Positive

True Positive
(TP)

Negative

True Negative
(TN)

Recall or TPR
=TP/(TP + FN)

Fall-Out or FPR
= FP/(FP + TN)

Precision
=TP/(TP + FP)

Miss rate
= FN/(FN + TN)

ROC and PR Curves

True Positive Rate

Algorithm 1
A%goritpm 2

O 1
0 0.2

0.4 0.6

0.8

False Positive Rate

Source: Davis and Goadrich. (2006) The Relationship Between Precision-Recall and ROC curves

1

Precision

Algorithm 1
Algorithm 2

.2

0.4 0.6
Recall

0.8

Training/Testing Splits

Training

Test | precision Recall,

What happens if you need more? Cross-Validation

Training/Testing Splits

Cross-Validation

Training/Testing Splits

Cross-Validation

Training/Testing Splits

Cross-Validation

Training/Testing Splits

Cross-Validation

Training/Testing Splits

Cross-Validation

Typical Industry Setup

A/B test

A/B Testing

X% ‘ 100 - X %

Control Treatment

Gather metrics, compare alternatives

A/B Testing: Complexities

Properly bucketing users
Novelty
Learning effects
Long vs. short term effects
Multiple, interacting tests

Nosy tech journalists

Supervised Machine Learning

Machine Learning Algorithm

training 1 testing/deployment

B
Q&

Applied ML in Academia

Download interesting dataset (comes with the problem)

Run baseline model
Train/Test

Build better model
Train/Test

Does new model beat baseline?
Yes: publish a paper!
No: try again!

THE SCIENTIFIC METHOD

Observe natural
phenomena > H

|THE ACTUAL METHOD

Make up Theory
based on what

Funding Agency
Manager wants

to be frue

www.phdcomics.com

Modi _ JORGE CHAM © 2006
‘ Hypothesis < |

Formulate S Test hypothesis S Establish Theory

ypothesis via rigorous based on repeated
Experiment validation of results
Madify Theory
| ; to fit data |

Design minimum Publish Paper: Defend Theory
experiments that — . rename Theorya ——> despite all
will preve shew? Hypothesis" and evidence to the
suggesf Theory pretend you used contrary
is true the Scientific

Method

Data Scientist: The
Sexiest Job of the 21st
Century

by Thomas H. Davenport and D.J. Patil

ER 2012 ISSUE

Fantasy Reality

Extract features What’s the task?
Develop cool ML technique Where’s the data?
#Profit What’s in this dataset?

What’s all the f#S!* crap?
Clean the data

Extract features

“Do” machine learning

Fail, iterate...

' IS
Dirty secret: very little of data science

' |
Jbout machine learning per se:

il R]
It’s impossible to overstress this: 80% of

the work in any data project is in cleaning
the data. — DJ Patil “Data Jujitsu”

r data science, with Brian Wilt, a Senior data scientist
Peter DaSilya for The New York Times

On finding things...

CamelCase
smallCamelCase
snake case
camel_Snake

dunder__snake

On naming things...

User\ld

uid User/d
userld
userid
user_id

L-f

mn 1
I\lﬂ rY Odﬂ ?
10 (;Ode ‘ -
day <y OUT snd
Yeste T kel ader —
came\/%‘ie fear ed %\;
acOS® (ILIWO™ e
Tyl > Lo
“:& ReW
& P\EP\“]
C
3 gan Fran®®
J\F;NO“‘TE ne 9 rom S
A
oM~ sep

\Nﬁ.‘ﬂ tbe ca‘ﬁ\e

Jow'

v

On feature extraction...

AN\\W+H\\s+\\d+\\s+\\d+:\\d+:\\d+)\\s+
([(*@]+?)@(\\S+)\\s+(\\S+):\\s+(\\S+)\\s+(\\S+)
\\SH((2:\\S+2,\\s+)* (2:\\S+2))\\s+(\\S+)\\s+(\\S+)
N\SHFNLANNTH)NNNNSH (Ww+)N\s+([AV NN
(AN NN F)NNs+HOANSHN " \\s+(\\S+)\\s+
(\NSH)ONNSH" (AN NN (AN AN F))

N NASHV AN NN (2NN A NN))N\ s *
(\\d*-[\\d-]*)?\\s*(\\d+) 2\\s* (\\d*\\. [\\d\\.]*)?
(\\s+[-\\w]+)?.*S

An actual Java regular expression used to parse log
message at Twitter circa 2010

Friction is cumulative!

-

P\
' |

.
o o —— o€
Y r

n

Data Plumblr‘zg.

[scene: consumer internet company in the Bay Area...

NSV

d

Okay, let’s get going... where’s the click data?

a N
It’s over here...

. J

Well, that’s kinda non-intuitive, but okay...

Well, it wouldn’t fit, so we had to shoehorn...

- . Oh, BTW, where’s the timestamp of the click?
Hang on, | don’t remember...
Uh, bad news. Looks like we forgot to log it...
) g [grumble, grumble, grumble]
Frontend Engineer Data Scientist
Develops new feature, adds Analyze user behavior, extract

logging code to capture clicks insights to improve feature

Fantasy Reality

Extract features What’s the task?
Develop cool ML technique Where’s the data?
#Profit What’s in this dataset?

What’s all the f#S!* crap?
Clean the data

Extract features

“Do” machine learning

Fail, iterate...

Finally works!

e h

— ot

Congratulations, you’re halfway there...

Does it actually work?
A/B testing

s it fast enough?

Good, you’re two thirds there...

Productionize

r"
., .
l

l n'F"'P'H- 4" R . 1]][""

Htit\lllll

Productionize

What are your jobs’ dependencies?
How/when are your jobs scheduled?
Are there enough resources?
How do you know if it’s working?

Who do you call if it stops working?

Infrastructure is critical here!
(plumbing)

Source: Wikipedia (Rlumbing)

