
Data-Intensive Distributed Computing

Part 6: Data Mining (1/4)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Winter 2019)

Adam Roegiest
Kira Systems

February 28, 2019

These slides are available at http://roegiest.com/bigdata-2019w/

Structure of the Course

“Core” framework features

and algorithm design

A
n

a
ly

z
in

g
T

e
x
t

A
n

a
ly

z
in

g
G

ra
p

h
s

A
n

a
ly

z
in

g

R
e

la
ti
o

n
a

l D
a
ta

D
a

ta
 M

in
in

g

Descriptive vs. Predictive Analytics

Frontend

Backend

users

Frontend

Backend

users

Frontend

Backend

external APIs

“Traditional”
BI tools

SQL on
Hadoop

Other
tools

Data Warehouse“Data Lake”

data scientists

OLTP
database

ETL
(Extract, Transform, and Load)

OLTP
database

OLTP
database

Supervised Machine Learning

The generic problem of function induction given
sample instances of input and output

Classification: output draws from finite discrete labels

Regression: output is a continuous value

This is not meant to be an exhaustive
treatment of machine learning!

Source: Wikipedia (Sorting)

Classification

Applications

Spam detection

Sentiment analysis

Content (e.g., topic) classification

Link prediction

Document ranking

Object recognition

And much much more!

Fraud detection

training

Model

Machine Learning Algorithm

testing/deployment

?

Supervised Machine Learning

Objects are represented in terms of features:

“Dense” features: sender IP, timestamp, # of recipients,
length of message, etc.

“Sparse” features: contains the term “viagra” in message,
contains “URGENT” in subject, etc.

Feature Representations

Applications

Spam detection

Sentiment analysis

Content (e.g., genre) classification

Link prediction

Document ranking

Object recognition

And much much more!

Fraud detection

Components of a ML Solution

Data
Features
Model

Optimization

(Banko and Brill, ACL 2001)

(Brants et al., EMNLP 2007)

No data like more data!

Limits of Supervised Classification?

Why is this a big data problem?
Isn’t gathering labels a serious bottleneck?

Solutions
Crowdsourcing

Bootstrapping, semi-supervised techniques
Exploiting user behavior logs

The virtuous cycle of data-driven products

a useful service

analyze user behavior
to extract insights

transform insights
into action

$
(hopefully)

Google. Facebook. Twitter. Amazon. Uber.

data sciencedata products

Virtuous Product Cycle

What’s the deal with neural networks?

Data
Features
Model

Optimization

Supervised Binary Classification

Restrict output label to be binary
Yes/No

1/0

Binary classifiers form primitive
building blocks for multi-class problems…

Binary Classifiers as Building Blocks
Example: four-way classification

One vs. rest classifiers

A or not?

B or not?

C or not?

D or not?

A or not?

B or not?

C or not?

D or not?

Classifier cascades

The Task

Given:

(sparse) feature vector

label

Induce:
Such that loss is minimized

loss function

Typically, we consider functions of a parametric form:

model parameters

Key insight: machine learning as an optimization problem!
(closed form solutions generally not possible)

* caveats

Gradient Descent: Preliminaries

Rewrite:

Compute gradient:
“Points” to fastest increasing “direction”

So, at any point: *

Gradient Descent: Iterative Update

Start at an arbitrary point, iteratively update:

We have:

Old weights

Update based on gradient

New weights

Intuition behind the math…

Gradient Descent: Iterative Update

Start at an arbitrary point, iteratively update:

Lots of details:
Figuring out the step size

Getting stuck in local minima
Convergence rate

…

We have:

Repeat until convergence:

Gradient Descent

Note, sometimes formulated as ascent but entirely equivalent

Gradient Descent

Source: Wikipedia (Hills)

Even More Details…

Gradient descent is a “first order” optimization technique
Often, slow convergence

Newton and quasi-Newton methods:
Intuition: Taylor expansion

Requires the Hessian (square matrix of second order partial derivatives):
impractical to fully compute

Source: Wikipedia (Hammer)

Logistic Regression

Logistic Regression: Preliminaries

Given:

Define:

Interpretation:

Relation to the Logistic Function

After some algebra:

The logistic function:

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

lo
g

is
ti
c
(z

)

z

Training an LR Classifier

Maximize the conditional likelihood:

Define the objective in terms of
conditional log likelihood:

We know:

So:

Substituting:

LR Classifier Update Rule
Take the derivative:

General form of update rule:

Final update rule:

Want more details?
Take a real machine-learning course!

Lots more details…

Regularization

Different loss functions
…

mapper mapper mapper mapper

reducer

compute partial gradient

single reducer

mappers

update model
iterate until convergence

MapReduce Implementation

Shortcomings

Hadoop is bad at iterative algorithms
High job startup costs

Awkward to retain state across iterations

High sensitivity to skew
Iteration speed bounded by slowest task

Potentially poor cluster utilization
Must shuffle all data to a single reducer

Some possible tradeoffs
Number of iterations vs. complexity of computation per iteration

E.g., L-BFGS: faster convergence, but more to compute

val points = spark.textFile(...).map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>
p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)
w -= gradient

}

mapper mapper mapper mapper

reducer

compute partial gradient

update model

Spark Implementation

Source: Wikipedia (Japanese rock garden)

