
Data-Intensive Distributed Computing

Part 5: Analyzing Relational Data (2/3)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Winter 2019)

Adam Roegiest
Kira Systems

February 14, 2019

These slides are available at http://roegiest.com/bigdata-2019w/



Frontend

Backend

users

BI tools

analysts

ETL
(Extract, Transform, and Load)

Data 
Warehouse

OLTP 
database

Frontend

Backend

users

Frontend

Backend

external APIs

OLTP 
database

OLTP 
database



“On the first day of logging the Facebook clickstream, more than 400 gigabytes of data 
was collected. The load, index, and aggregation processes for this data set really taxed the 
Oracle data warehouse. Even after significant tuning, we were unable to aggregate a day 
of clickstream data in less than 24 hours.” 

Jeff Hammerbacher, Information Platforms and the Rise of the Data Scientist. 
In, Beautiful Data, O’Reilly, 2009. 



Frontend

Backend

users

ETL
(Extract, Transform, and Load)

Hadoop

Wait, so why not use a 
database to begin with?

SQL-on-Hadoop

“OLTP”

data scientists

Cost + Scalability



Databases are great…

If your data has structure (and you know what the structure is)

If you know what queries you’re going to run ahead of time
If your data is reasonably clean

Databases are not so great…

If your data has little structure (or you don’t know the structure)

If you don’t know what you’re looking for
If your data is messy and noisy



Frontend

Backend

users

Frontend

Backend

users

Frontend

Backend

external APIs

“Traditional”
BI tools

SQL on 
Hadoop

Other
tools

Data Warehouse“Data Lake”

data scientists

OLTP 
database

ETL
(Extract, Transform, and Load)

OLTP 
database

OLTP 
database



“Traditional”
BI tools

SQL on 
Hadoop

Other
tools

Data Warehouse“Data Lake”

data scientists

What’s the selling point of SQL-on-Hadoop?
Trade (a little?) performance for flexibility



HDFS

Execution Layer

SQL query interface

Other Data 
Sources

SQL-on-Hadoop

Today: How all of this works…



Source: Material drawn from Cloudera training VM

SELECT s.word, s.freq, k.freq FROM shakespeare s 

JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1 

ORDER BY s.freq DESC LIMIT 10;

the 25848 62394

I 23031 8854

and 19671 38985

to 18038 13526

of 16700 34654

a 14170 8057

you 12702 2720

my 11297 4135

in 10797 12445

is 8882 6884

Hive: Example

Relational join on two tables:
Table of word counts from Shakespeare collection

Table of word counts from the bible



SELECT s.word, s.freq, k.freq FROM shakespeare s 

JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1 

ORDER BY s.freq DESC LIMIT 10;

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (. (TOK_TABLE_OR_COL s) 

word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT 

(TOK_SELEXPR (. (TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR (. 

(TOK_TABLE_OR_COL k) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1) (>= (. (TOK_TABLE_OR_COL k) 

freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (. (TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)

(Abstract Syntax Tree)

Hive: Behind the Scenes



STAGE DEPENDENCIES:

Stage-1 is a root stage

Stage-2 depends on stages: Stage-1

Stage-0 is a root stage

STAGE PLANS:

Stage: Stage-1

Map Reduce

Alias -> Map Operator Tree:

s 

TableScan

alias: s

Filter Operator

predicate:

expr: (freq >= 1)

type: boolean

Reduce Output Operator

key expressions:

expr: word

type: string

sort order: +

Map-reduce partition columns:

expr: word

type: string

tag: 0

value expressions:

expr: freq

type: int

expr: word

type: string

k 

TableScan

alias: k

Filter Operator

predicate:

expr: (freq >= 1)

type: boolean

Reduce Output Operator

key expressions:

expr: word

type: string

sort order: +

Map-reduce partition columns:

expr: word

type: string

tag: 1

value expressions:

expr: freq

type: int

Reduce Operator Tree:

Join Operator

condition map:

Inner Join 0 to 1

condition expressions:

0 {VALUE._col0} {VALUE._col1}

1 {VALUE._col0}

outputColumnNames: _col0, _col1, _col2

Filter Operator

predicate:

expr: ((_col0 >= 1) and (_col2 >= 1))

type: boolean

Select Operator

expressions:

expr: _col1

type: string

expr: _col0

type: int

expr: _col2

type: int

outputColumnNames: _col0, _col1, _col2

File Output Operator

compressed: false

GlobalTableId: 0

table:

input format: org.apache.hadoop.mapred.SequenceFileInputFormat

output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

Stage: Stage-2

Map Reduce

Alias -> Map Operator Tree:

hdfs://localhost:8022/tmp/hive-training/364214370/10002 

Reduce Output Operator

key expressions:

expr: _col1

type: int

sort order: -

tag: -1

value expressions:

expr: _col0

type: string

expr: _col1

type: int

expr: _col2

type: int

Reduce Operator Tree:

Extract

Limit

File Output Operator

compressed: false

GlobalTableId: 0

table:

input format: org.apache.hadoop.mapred.TextInputFormat

output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

Stage: Stage-0

Fetch Operator

limit: 10

Hive: Behind the Scenes



Hive Architecture



Hive Implementation

Metastore holds metadata
Tables schemas (field names, field types, etc.) and encoding

Permission information (roles and users)

Hive data stored in HDFS
Tables in directories

Partitions of tables in sub-directories
Actual data in files (plain text or binary encoded)



Frontend

Backend

users

Frontend

Backend

users

Frontend

Backend

external APIs

“Traditional”
BI tools

SQL on 
Hadoop

Other
tools

Data Warehouse“Data Lake”

data scientists

OLTP 
database

ETL
(Extract, Transform, and Load)

OLTP 
database

OLTP 
database



Dim_Customer

Dim_Date

Dim_Product
Fact_Sales

Dim_Store

A Simple OLAP Schema



TPC-H Data Warehouse



store

p
ro

d
u

ct

slice and dice

Common operations

roll up/drill down

pivot

OLAP Cubes



MapReduce algorithms 
for processing relational data

Source: www.flickr.com/photos/stikatphotography/1590190676/



Relational Algebra

Primitives
Projection ()

Selection ()

Cartesian product ()

Set union ()

Set difference (−)

Rename ()

Other Operations
Join (⋈)

Group by… aggregation
…



R1



R2

R3

R4

R5

R1

R3

Selection



Selection in MapReduce

Easy!
In mapper: process each tuple, only emit tuples that meet criteria

Can be pipelined with projection
No reducers necessary (unless to do something else)

Performance mostly limited by HDFS throughput
Speed of encoding/decoding tuples becomes important

Take advantage of compression when available
Semistructured data? No problem!



R1



R2

R3

R4

R5

R1

R2

R3

R4

R5

Projection 



Projection in MapReduce

Easy!
In mapper: process each tuple, re-emit with only projected attributes

Can be pipelined with selection
No reducers necessary (unless to do something else)

Implementation detail: bookkeeping required
Need to keep track of attribute mappings after projection

e.g., name was r[4], becomes r[1] after projection

Performance mostly limited by HDFS throughput
Speed of encoding/decoding tuples becomes important

Take advantage of compression when available
Semistructured data? No problem!



Group by… Aggregation

Aggregation functions:
AVG, MAX, MIN, SUM, COUNT, …

MapReduce implementation:
Map over dataset, emit tuples, keyed by group by attribute

Framework automatically groups values by group by attribute
Compute aggregation function in reducer

Optimize with combiners, in-mapper combining



Combiner Design

Combiners and reducers share same method signature
Sometimes, reducers can serve as combiners

Often, not…

Remember: combiner are optional optimizations
Should not affect algorithm correctness

May be run 0, 1, or multiple times

Example: find average of integers associated with the same key

SELECT key, AVG(value) FROM r GROUP BY key;



Computing the Mean: Version 1

class Mapper {
def map(key: Text, value: Int, context: Context) = {

context.write(key, value)
}

}

class Reducer {
def reduce(key: Text, values: Iterable[Int], context: Context) {

for (value <- values) {
sum += value
cnt += 1

}
context.write(key, sum/cnt)

}
}



class Mapper {
def map(key: Text, value: Int, context: Context) =

context.write(key, value)
}
class Combiner {
def reduce(key: Text, values: Iterable[Int], context: Context) = {

for (value <- values) {
sum += value
cnt += 1

}
context.write(key, (sum, cnt))

}
}
class Reducer {
def reduce(key: Text, values: Iterable[Pair], context: Context) = {

for (value <- values) {
sum += value.left
cnt += value.right

}
context.write(key, sum/cnt)

}
}

Computing the Mean: Version 2



class Mapper {
def map(key: Text, value: Int, context: Context) =

context.write(key, (value, 1))
}
class Combiner {
def reduce(key: Text, values: Iterable[Pair], context: Context) = {

for (value <- values) {
sum += value.left
cnt += value.right

}
context.write(key, (sum, cnt))

}
}
class Reducer {
def reduce(key: Text, values: Iterable[Pair], context: Context) = {

for (value <- values) {
sum += value.left
cnt += value.right

}
context.write(key, sum/cnt)

}
}

Computing the Mean: Version 3



Computing the Mean: Version 4

class Mapper  {
val sums = new HashMap()
val counts = new HashMap()

def map(key: Text, value: Int, context: Context) = {
sums(key) += value
counts(key) += 1

}

def cleanup(context: Context) = {
for (key <- counts) {
context.write(key, (sums(key), counts(key)))

}
}

}



Relational Joins

Source: Microsoft Office Clip Art



R1

R2

R3

R4

S1

S2

S3

S4

R1 S2

R2 S4

R3 S1

R4 S3

Relational Joins

(More precisely, an inner join)



One-to-OneOne-to-ManyMany-to-Many

Types of Relationships



Join Algorithms in MapReduce

Reduce-side join
aka repartition join

aka shuffle join

Map-side join
aka sort-merge join

Hash join
aka broadcast join
aka replicated join



Reduce-side Join

Basic idea: group by join key
Map over both datasets

Emit tuple as value with join key as the intermediate key
Execution framework brings together tuples sharing the same key

Perform join in reducer

Two variants
1-to-1 joins

1-to-many and many-to-many joins

aka repartition join, shuffle join



R1

R4

S2

S3

R1

R4

S2

S3

keys values

Map

R1

R4

S2

S3

keys values

Reduce

Note: no guarantee if R is going to come first or S

Reduce-side Join: 1-to-1

More precisely, an inner join: What about outer joins?



R1

S2

S3

R1

S2

S3

S9

keys values

Map

R1 S2

keys values

Reduce

S9

S3 …

Reduce-side Join: 1-to-many



Secondary Sorting

What if we want to sort value also?
E.g., k → (v1, r), (v3, r), (v4, r), (v8, r)…

MapReduce sorts input to reducers by key
Values may be arbitrarily ordered



Secondary Sorting: Solutions

Solution 2
“Value-to-key conversion” : form composite intermediate key, (k, v1)

Let the execution framework do the sorting
Preserve state across multiple key-value pairs to handle processing

Anything else we need to do?

Solution 1
Buffer values in memory, then sort

Why is this a bad idea?



k → (v8, r4), (v1, r1), (v4, r3), (v3, r2)…

(k, v1) → r1

Before

After

(k, v3) → r2

(k, v4) → r3

(k, v8) → r4

Values arrive in arbitrary order…

…

Values arrive in sorted order…

Process by preserving state across multiple keys

Remember to partition correctly!

Value-to-Key Conversion



R1

keys values

In reducer…

S2

S3

S9

R4

S3

S7

New key encountered: hold in memory

Cross with records from other dataset

New key encountered: hold in memory

Cross with records from other dataset

Reduce-side Join: V-to-K Conversion



R1

keys values

S2

S3

S9

Hold in memory

Cross with records from other dataset

R5

R8

Reduce-side Join: many-to-many

In reducer…



R1

R2

R3

R4

S1

S2

S3

S4

merge to join

Assume two datasets are sorted by the join key:

Map-side Join
aka sort-merge join



R1

R2

R3

R4

S1

S2

S3

S4

R1

R2

R3

R4

S1

S2

S3

S4

Assume two datasets are sorted by the join key:

merge to join merge to join

How can we parallelize this? Co-partitioning

Map-side Join
aka sort-merge join



Map-side Join
aka sort-merge join

Works if…
Two datasets are co-partitioned

Sorted by join key

MapReduce implementation:
Map over one dataset, read from other corresponding partition

No reducers necessary (unless to do something else)

Co-partitioned, sorted datasets: realistic to expect?



Hash Join
aka broadcast join, replicated join

Basic idea:
Load one dataset into memory in a hashmap, keyed by join key

Read other dataset, probe for join key

Works if…
R << S and R fits into memory

MapReduce implementation:
Distribute R to all nodes (e.g., DistributedCache)

Map over S, each mapper loads R in memory and builds the hashmap
For every tuple in S, probe join key in R

No reducers necessary (unless to do something else)



Hash Join Variants

Co-partitioned variant:
R and S co-partitioned (but not sorted)?

Only need to build hashmap on the corresponding partition

Striped variant:
R too big to fit into memory? 

Divide R into R1, R2, R3, … s.t. each Rn fits into memory
Perform hash join: n, Rn⋈ S

Take the union of all join results

Use a global key-value store:
Load R into memcached (or Redis)

Probe global key-value store for join key



Which join to use?

Hash join > map-side join > reduce-side join

Limitations of each?
In-memory join: memory

Map-side join: sort order and partitioning
Reduce-side join: general purpose



Execution Layer

SQL query interface

SQL-on-Hadoop

HDFS Other Data 
Sources



Build logical plan

Optimize logical plan

Select physical plan

Note: generic SQL-on-Hadoop implementation; not exactly what Hive does, but pretty close.

Putting Everything Together

SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;



big1

join

join

big2 small

select

project

Build logical plan

Optimize logical plan

Select physical plan

Putting Everything Together

SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;



big1

join

join

big2 small

project

select

project

select

project

Build logical plan

Optimize logical plan

Select physical plan

Putting Everything Together

SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;



big1

join

join

big2 small

project

select

project

select

project

Shuffle join?
Sort-merge join?
Hash join?

Shuffle join?
Sort-merge join?
Hash join?

Build logical plan

Optimize logical plan

Select physical plan

Putting Everything Together

SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;



big1

shuffle
J

hashJ

big2 small

sink

scan scan

Build logical plan

Optimize logical plan

Select physical plan

Putting Everything Together

SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;



big1

shuffle
J

hashJ

big2 small

sink

scan scan

Build logical plan

Optimize logical plan

Select physical plan

Map

Reduce

Map

Putting Everything Together

SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;



SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;

big1

shuffle
J

hashJ

big2 small

sink

scan scan

Build logical plan

Optimize logical plan

Select physical plan

Map

Reduce

Putting Everything Together



SELECT s.word, s.freq, k.freq FROM shakespeare s 

JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1 

ORDER BY s.freq DESC LIMIT 10;

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (. (TOK_TABLE_OR_COL s) 

word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT 

(TOK_SELEXPR (. (TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR (. 

(TOK_TABLE_OR_COL k) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1) (>= (. (TOK_TABLE_OR_COL k) 

freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (. (TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)

(Abstract Syntax Tree)

Hive: Behind the Scenes
Now you understand what’s going on here!



STAGE DEPENDENCIES:

Stage-1 is a root stage

Stage-2 depends on stages: Stage-1

Stage-0 is a root stage

STAGE PLANS:

Stage: Stage-1

Map Reduce

Alias -> Map Operator Tree:

s 

TableScan

alias: s

Filter Operator

predicate:

expr: (freq >= 1)

type: boolean

Reduce Output Operator

key expressions:

expr: word

type: string

sort order: +

Map-reduce partition columns:

expr: word

type: string

tag: 0

value expressions:

expr: freq

type: int

expr: word

type: string

k 

TableScan

alias: k

Filter Operator

predicate:

expr: (freq >= 1)

type: boolean

Reduce Output Operator

key expressions:

expr: word

type: string

sort order: +

Map-reduce partition columns:

expr: word

type: string

tag: 1

value expressions:

expr: freq

type: int

Reduce Operator Tree:

Join Operator

condition map:

Inner Join 0 to 1

condition expressions:

0 {VALUE._col0} {VALUE._col1}

1 {VALUE._col0}

outputColumnNames: _col0, _col1, _col2

Filter Operator

predicate:

expr: ((_col0 >= 1) and (_col2 >= 1))

type: boolean

Select Operator

expressions:

expr: _col1

type: string

expr: _col0

type: int

expr: _col2

type: int

outputColumnNames: _col0, _col1, _col2

File Output Operator

compressed: false

GlobalTableId: 0

table:

input format: org.apache.hadoop.mapred.SequenceFileInputFormat

output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

Stage: Stage-2

Map Reduce

Alias -> Map Operator Tree:

hdfs://localhost:8022/tmp/hive-training/364214370/10002 

Reduce Output Operator

key expressions:

expr: _col1

type: int

sort order: -

tag: -1

value expressions:

expr: _col0

type: string

expr: _col1

type: int

expr: _col2

type: int

Reduce Operator Tree:

Extract

Limit

File Output Operator

compressed: false

GlobalTableId: 0

table:

input format: org.apache.hadoop.mapred.TextInputFormat

output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

Stage: Stage-0

Fetch Operator

limit: 10

Hive: Behind the Scenes
Now you understand what’s going on here!



Execution Layer

SQL query interface

SQL-on-Hadoop

HDFS Other Data 
Sources



val sqlContext = ... // An existing SQLContext
val df = sqlContext.sql("SELECT * FROM table")
// df is a dataframe, can be further manipulated...

// employees is a dataframe:
employees
.join(dept, employees ("deptId") === dept ("id"))
.where(employees("gender") === "female")
.groupBy(dept("id"), dept ("name"))
.agg(count("name"))

What about Spark SQL?

Based on the DataFrame API:
A distributed collection of data organized into named columns

Two ways of specifying SQL queries:

Directly:

Via DataFrame API:



SQL Query 

DataFrame 

Unresolved 
Logical Plan 

Logical Plan 
Optimized 

Logical Plan 

Physical 
Plans 
Physical 

Plans 
RDDs 

Selected 
Physical 

Plan 

Analysis 
Logical 

Optimization 
Physical 
Planning 

C
o

s
t 
M

o
d
e

l 

Physical 
Plans 

Code 
Generation 

Catalog 

Figure3: Phases of query planning in Spark SQL. Rounded rectangles represent Catalyst trees.

In total, the rules for the analyzer are about 1000 lines of code.

4.3.2 Logical Optimization

Thelogical optimizationphaseappliesstandardrule-basedoptimiza-

tionstothelogical plan. Theseincludeconstant folding, predicate
pushdown, projection pruning, null propagation, Boolean expres-

sionsimplification, andother rules. Ingeneral, wehavefound it
extremely simpletoaddrulesfor awidevariety of situations. For
example, whenweaddedthefixed-precision DECI MAL typetoSpark

SQL, wewantedtooptimizeaggregationssuchassumsandaver-
agesonDECI MALswithsmall precisions; it took 12linesof codeto

writearulethat findssuchdecimalsinSUMandAVGexpressions, and
caststhemtounscaled64-bit LONGs, doestheaggregationonthat,

thenconvertstheresult back. A simplifiedversionof thisrulethat
only optimizes SUM expressions is reproduced below:

obj ect Deci mal Aggr egat es ext ends Rul e[ Logi cal Pl an] {
/ * * Maxi mum number of deci mal di gi t s i n a Long * /
val MAX_LONG_DI GI TS = 18

def appl y ( pl an: Logi cal Pl an) : Logi cal Pl an = {
pl an t r ansf or mAl l Expr essi ons {

case Sum( e @ Deci mal Type. Expr essi on( pr ec , scal e) )
i f pr ec + 10 <= MAX_LONG_DI GI TS =>

MakeDeci mal ( Sum( LongVal ue( e) ) , pr ec + 10, scal e)
}

}

Asanother example, a12-lineruleoptimizesLI KE expressions

with simple regular expressions into St r i ng. st ar t sWi t h or
St r i ng. cont ai ns calls. The freedom to use arbitrary Scala code in

rulesmadethesekindsof optimizations, whichgobeyondpattern-
matching thestructureof asubtree, easy toexpress. In total, the

logical optimization rules are 800 lines of code.

4.3.3 Physical Planning

Inthephysical planningphase, Spark SQL takesalogical planand
generatesoneor morephysical plans, usingphysical operatorsthat

match theSpark execution engine. It then selectsaplan using a
cost model. At themoment, cost-basedoptimization isonly usedto

select joinalgorithms: for relationsthat areknowntobesmall,Spark
SQL usesabroadcast join, usingapeer-to-peer broadcast facility

availableinSpark.5 Theframework supportsbroader useof cost-
basedoptimization, however, ascostscanbeestimatedrecursively

for awholetreeusingarule. Wethusintend to implement richer
cost-based optimization in the future.

Thephysical planner alsoperformsrule-basedphysical optimiza-
tions, suchaspipelining projections or filters into oneSpark map

operation. Inaddition, it canpushoperationsfromthelogical plan

intodatasourcesthat support predicateor projectionpushdown. We
will describe the API for these data sources in Section 4.4.1.

In total, the physical planning rules are about 500 lines of code.

5Tablesizesareestimated if thetableiscachedinmemory or comesfrom
an external file, or if it is the result of asubquery with aLI MI T.

4.3.4 Code Generation

The final phase of query optimization involves generating Java

bytecodetorunoneachmachine. BecauseSparkSQL oftenoperates
onin-memory datasets, whereprocessingisCPU-bound, wewanted

to support code generation to speed up execution. Nonetheless,
code generation engines are often complicated to build, amounting

essentially toacompiler. Catalyst reliesonaspecial featureof the
Scalalanguage, quasiquotes[34], tomakecodegenerationsimpler.

Quasiquotesallowtheprogrammaticconstructionof abstract syntax
trees(ASTs) in theScalalanguage, whichcan thenbefed to the

Scalacompiler at runtimetogeneratebytecode. WeuseCatalyst to
transformatreerepresentinganexpression inSQL toanASTfor

Scalacodetoevaluatethat expression, andthencompileandrunthe
generated code.

Asasimpleexample, consider theAdd, AttributeandLiteral tree
nodesintroducedinSection4.2, whichallowedustowriteexpres-

sionssuchas( x+y) +1. Without codegeneration, suchexpressions
wouldhavetobeinterpreted for eachrowof data, by walkingdown

atreeof Add, AttributeandLiteral nodes. This introduces large
amountsof branchesandvirtual functioncallsthat slowdownexe-

cution. Withcodegeneration, wecanwriteafunction totranslatea
specific expression tree to aScala AST as follows:

def compi l e( node: Node) : AST = node mat ch {
case Li t er al ( val ue) => q" $val ue"
case At t r i but e( name) => q" r ow. get ( $name) "
case Add( l ef t , r i ght ) =>

q" ${ compi l e( l ef t ) } + ${ compi l e( r i ght ) } "
}

Thestringsbeginning with q arequasiquotes, meaning that al-
thoughthey look likestrings, they areparsedby theScalacompiler

atcompiletimeandrepresent ASTsfor thecodewithin. Quasiquotes
canhavevariablesor other ASTsspliced intothem, indicatedusing

$ notation. For example, Li t er al ( 1) wouldbecometheScalaAST
for 1, whileAt t r i but e( " x" ) becomes r ow. get ( " x" ) . Intheend, a

treelikeAdd( Li t er al ( 1) , At t r i but e( " x" ) ) becomesanASTfor
aScala expression like 1+r ow. get ( " x" ) .

Quasiquotesaretype-checkedat compiletimetoensurethat only
appropriate ASTsor literals aresubstituted in, making themsig-

nificantlymoreuseablethanstringconcatenation, andthey result
directly inaScalaASTinsteadof runningtheScalaparserat runtime.

Moreover, they arehighly composable, asthecodegenerationrule
for eachnodedoesnot needtoknowhowthetreesreturnedby its

childrenwerebuilt. Finally, theresultingcodeisfurther optimized
by theScalacompiler incasethereareexpression-level optimiza-

tionsthat Catalyst missed. Figure4showsthat quasiquotes let us
generate code with performance similar to hand-tuned programs.

Wehavefoundquasiquotesvery straightforwardtousefor code
generation, andweobservedthat evennew contributorstoSpark

SQL could quickly add rulesfor new typesof expressions. Qua-
siquotes also work well with our goal of running on nativeJava

1388

At the end of the day… it’s transformations on RDDs

Spark SQL: Query Planning



= Reduce-side join

= Map-side join

Hash join with broadcast variables

Spark SQL: Physical Execution



Hadoop Data Warehouse Design

Observation:
Joins are relatively expensive

OLAP queries frequently involve joins

Solution: denormalize
What’s normalization again?

Why normalize to begin with?
Fundamentally a time-space tradeoff

How much to denormalize?
What about consistency?



Denormalization Opportunities?

“Denormalizing the snowflake”



Execution Layer

SQL query interface

SQL-on-Hadoop

HDFS Other Data 
Sources

What’s the assignment?



HDFS

Spark

SQL query interface

SQL-on-Hadoop

You

What’s the assignment?



What’s the assignment?



SQL query 

select
l_returnflag,
l_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice*(1-l_discount)) as sum_disc_price,
sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(*) as count_order

from lineitem
where
l_shipdate = 'YYYY-MM-DD'

group by l_returnflag, l_linestatus;

Raw Spark program

input parameter

Your task…

What’s the assignment?



Source: Wikipedia (Japanese rock garden)


