

Data-Intensive Distributed Computing

CS 431/631 451/651 (Winter 2019)

Part 4: Analyzing Graphs (2/2) February 7, 2019

Adam Roegiest Kira Systems

These slides are available at http://roegiest.com/bigdata-2019w/

Parallel BFS in MapReduce

Data representation:

Key: node *n*

Value: d (distance from start), adjacency list

Initialization: for all nodes except for start node, $d = \infty$

Mapper:

 $\forall m \in \text{adjacency list: emit } (m, d + 1)$ Remember to also emit distance to yourself

Sort/Shuffle:

Groups distances by reachable nodes

Reducer:

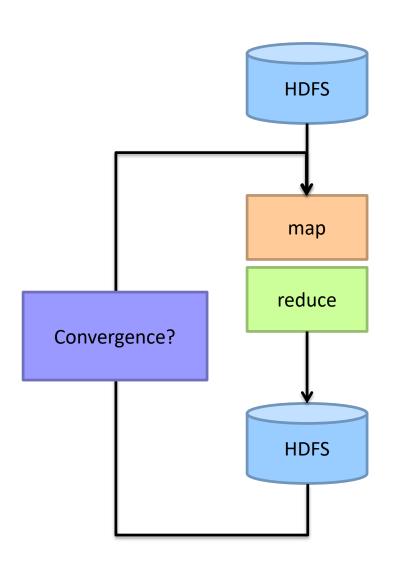
Selects minimum distance path for each reachable node Additional bookkeeping needed to keep track of actual path

Remember to pass along the graph structure!

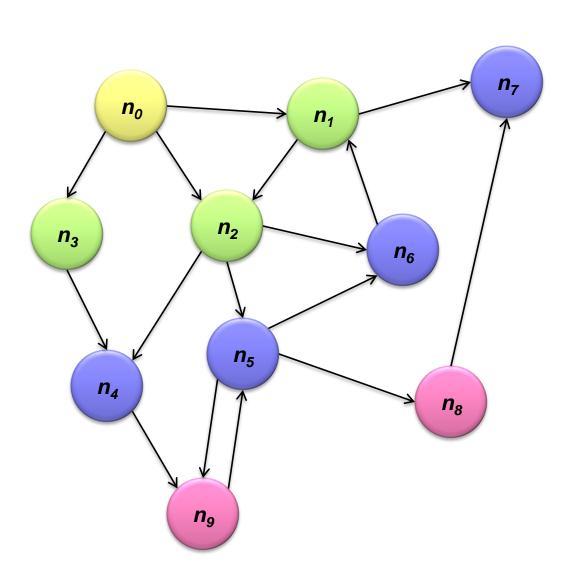
BFS Pseudo-Code

```
class Mapper {
 def map(id: Long, n: Node) = {
  emit(id, n)
  val d = n.distance
  emit(id, d)
  for (m <- n.adjacenyList) {
   emit(m, d+1)
class Reducer {
 def reduce(id: Long, objects: Iterable[Object]) = {
  var min = infinity
  var n = null
  for (d <- objects) {
   if (isNode(d)) n = d
   else if d < min min = d
  n.distance = min
  emit(id, n)
```

Implementation Practicalities



Visualizing Parallel BFS



Non-toy?

Social Search

When searching, how to rank friends named "John"?

Assume undirected graphs
Rank matches by distance to user

Naïve implementations:

Precompute all-pairs distances Compute distances at query time

Can we do better?

All Pairs?

Floyd-Warshall Algorithm: difficult to MapReduce-ify...

Multiple-source shortest paths in MapReduce: Run multiple parallel BFS *simultaneously*

Assume source nodes $\{s_0, s_1, ... s_n\}$

Instead of emitting a single distance, emit an array of distances, wrt each source Reducer selects minimum for each element in array

Does this scale?

Landmark Approach (aka sketches)

Select
$$n$$
 seeds $\{s_0, s_1, ... s_n\}$

Compute distances from seeds to every node:

A =
$$[2, 1, 1]$$

Nodes B = $[1, 1, 2]$
C = $[4, 3, 1]$
D = $[1, 2, 4]$

What can we conclude about distances?
Insight: landmarks bound the maximum path length

Run multi-source parallel BFS in MapReduce!

Lots of details:

How to more tightly bound distances How to select landmarks (random isn't the best...)

Graphs and MapReduce (and Spark)

A large class of graph algorithms involve:

Local computations at each node
Propagating results: "traversing" the graph

Generic recipe:

Represent graphs as adjacency lists
Perform local computations in mapper
Pass along partial results via outlinks, keyed by destination node
Perform aggregation in reducer on inlinks to a node
Iterate until convergence: controlled by external "driver"
Don't forget to pass the graph structure between iterations

PageRank

(The original "secret sauce" for evaluating the importance of web pages)

(What's the "Page" in PageRank?)

Random Walks Over the Web

Random surfer model:

User starts at a random Web page
User randomly clicks on links, surfing from page to page

PageRank

Characterizes the amount of time spent on any given page Mathematically, a probability distribution over pages

Use in web ranking

Correspondence to human intuition?

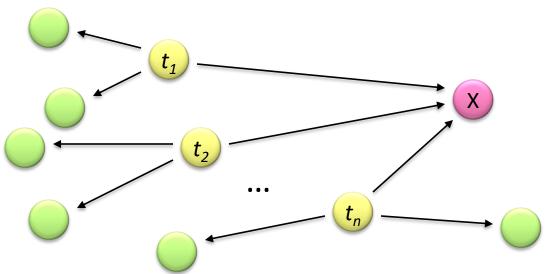
One of thousands of features used in web search

PageRank: Defined

Given page x with inlinks $t_1...t_n$, where

C(t) is the out-degree of t α is probability of random jump N is the total number of nodes in the graph

$$PR(x) = \alpha \left(\frac{1}{N}\right) + (1 - \alpha) \sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}$$



Computing PageRank

Remember this?

A large class of graph algorithms involve:

Local computations at each node Propagating results: "traversing" the graph

Sketch of algorithm:

Start with seed PR_i values

Each page distributes PR_i mass to all pages it links to

Each target page adds up mass from in-bound links to compute PR_{i+1} Iterate until values converge

Simplified PageRank

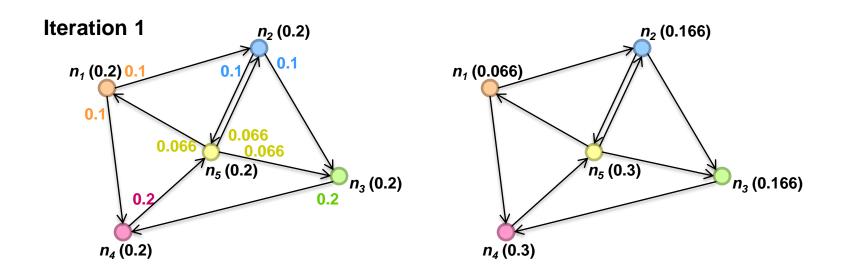
First, tackle the simple case:

No random jump factor No dangling nodes

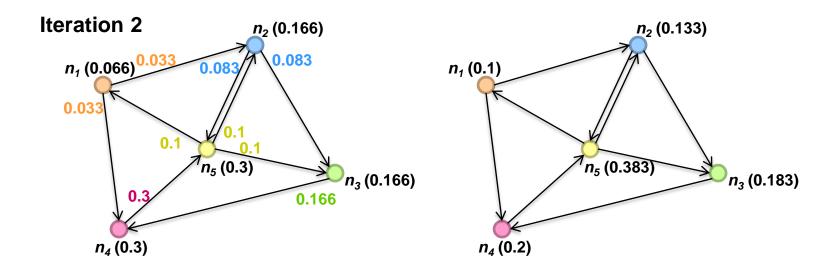
Then, factor in these complexities...

Why do we need the random jump? Where do dangling nodes come from?

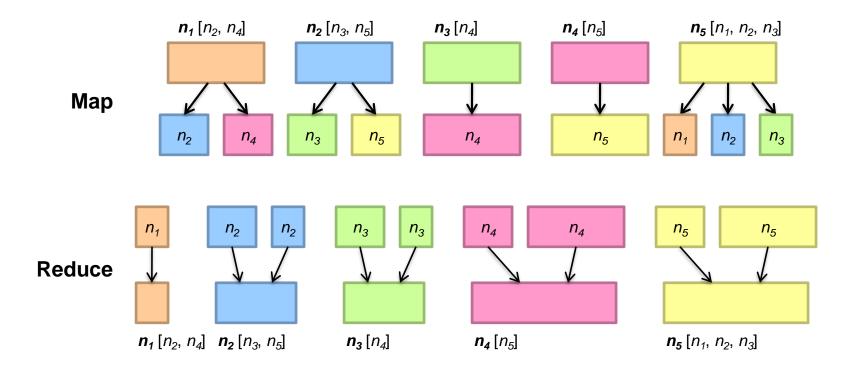
Sample PageRank Iteration (1)



Sample PageRank Iteration (2)



PageRank in MapReduce



PageRank Pseudo-Code

```
class Mapper {
 def map(id: Long, n: Node) = {
  emit(id, n)
  p = n.PageRank / n.adjacenyList.length
  for (m <- n.adjacenyList) {
   emit(m, p)
class Reducer {
 def reduce(id: Long, objects: Iterable[Object]) = {
  var s = 0
  var n = null
  for (p <- objects) {
   if (isNode(p)) n = p
   else
               s += p
  n.PageRank = s
  emit(id, n)
```

PageRank vs. BFS

PageRank BFS

Map PR/N d+1

Reduce sum min

A large class of graph algorithms involve:

Local computations at each node
Propagating results: "traversing" the graph

Complete PageRank

Two additional complexities

What is the proper treatment of dangling nodes? How do we factor in the random jump factor?

Solution: second pass to redistribute "missing PageRank mass" and account for random jumps

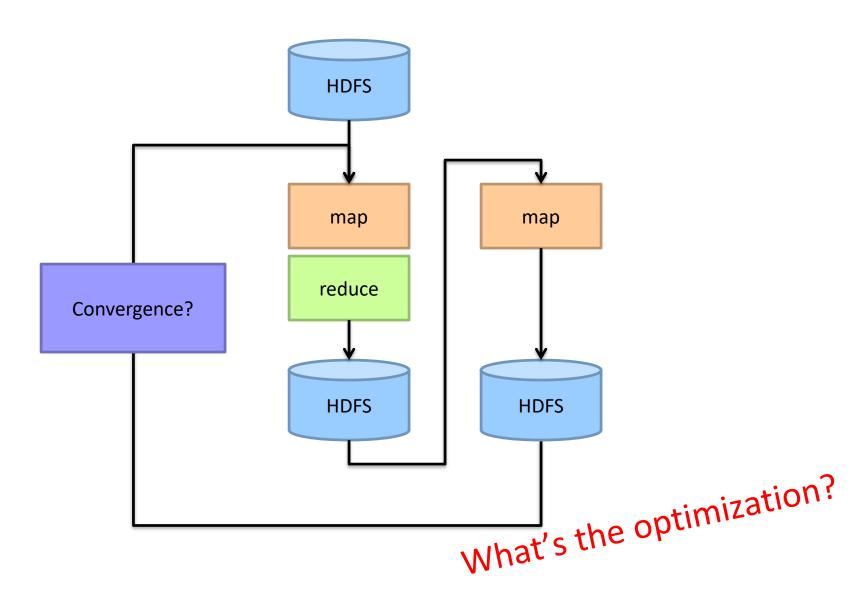
$$p' = \alpha \left(\frac{1}{N}\right) + (1 - \alpha)\left(\frac{m}{N} + p\right)$$

p is PageRank value from before, p' is updated PageRank value

N is the number of nodes in the graph m is the missing PageRank mass

One final optimization: fold into a single MR job

Implementation Practicalities



PageRank Convergence

Alternative convergence criteria

Iterate until PageRank values don't change Iterate until PageRank rankings don't change Fixed number of iterations

Convergence for web graphs?

Not a straightforward question

Watch out for link spam and the perils of SEO:

Link farms
Spider traps

• • •

Log Probs

PageRank values are *really* small... Solution?

Product of probabilities = Addition of log probs

Addition of probabilities?

$$a \oplus b = \begin{cases} b + \log(1 + e^{a-b}) & a < b \\ a + \log(1 + e^{b-a}) & a \ge b \end{cases}$$

More Implementation Practicalities

How do you even extract the webgraph?

Lots of details...

Beyond PageRank

Variations of PageRank

Weighted edges Personalized PageRank

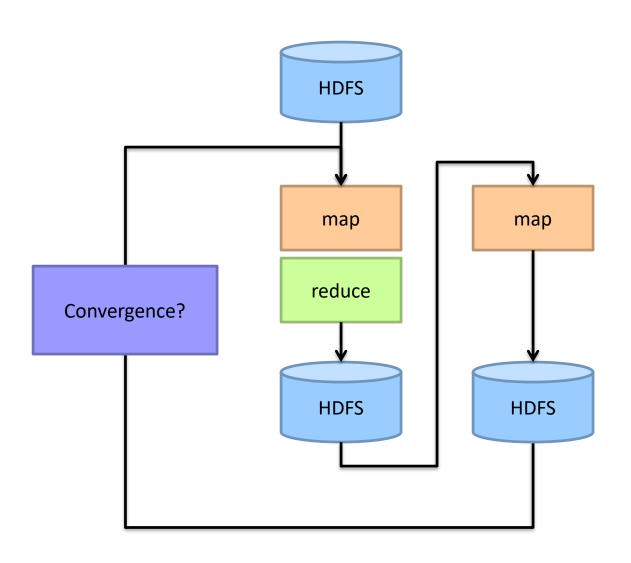
Variants on graph random walks

Hubs and authorities (HITS)
SALSA

Applications

Static prior for web ranking
Identification of "special nodes" in a network
Link recommendation
Additional feature in any machine learning problem

Implementation Practicalities



MapReduce Sucks

Java verbosity

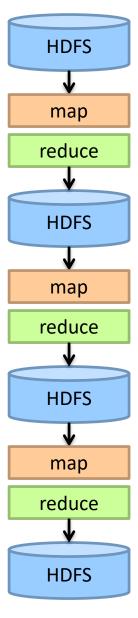
Hadoop task startup time

Stragglers

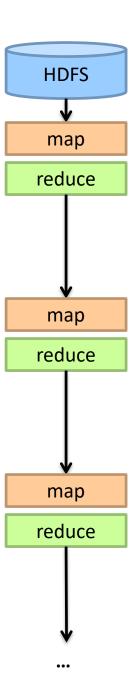
Needless graph shuffling

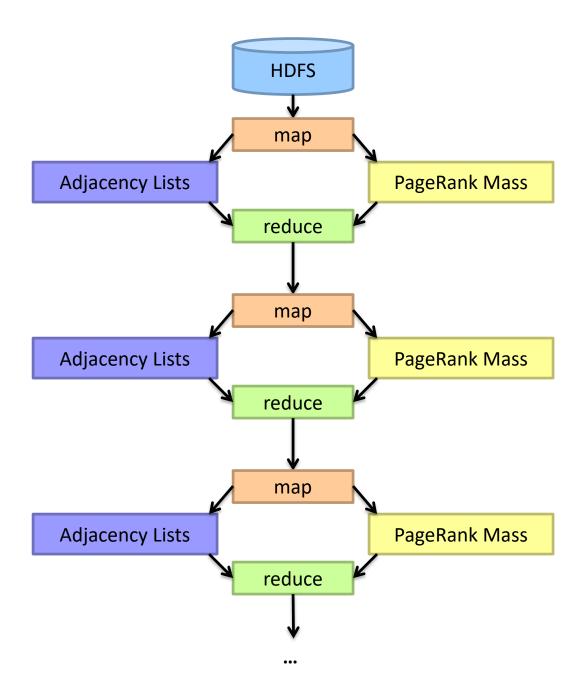
Checkpointing at each iteration

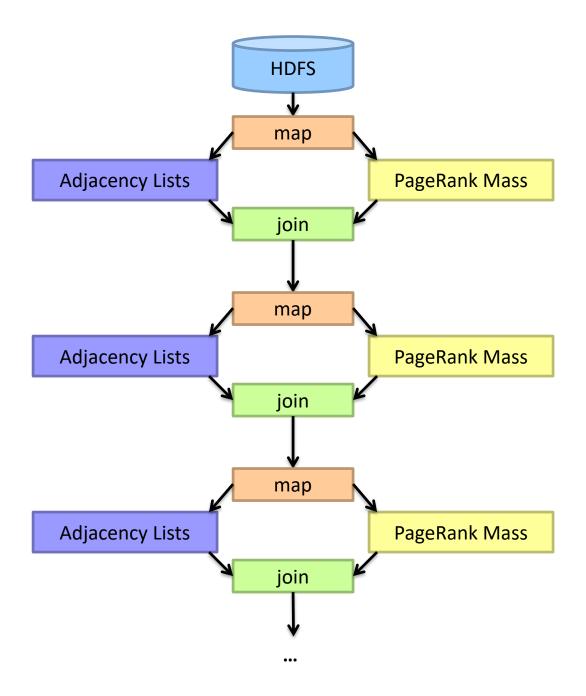
Let's Spark!

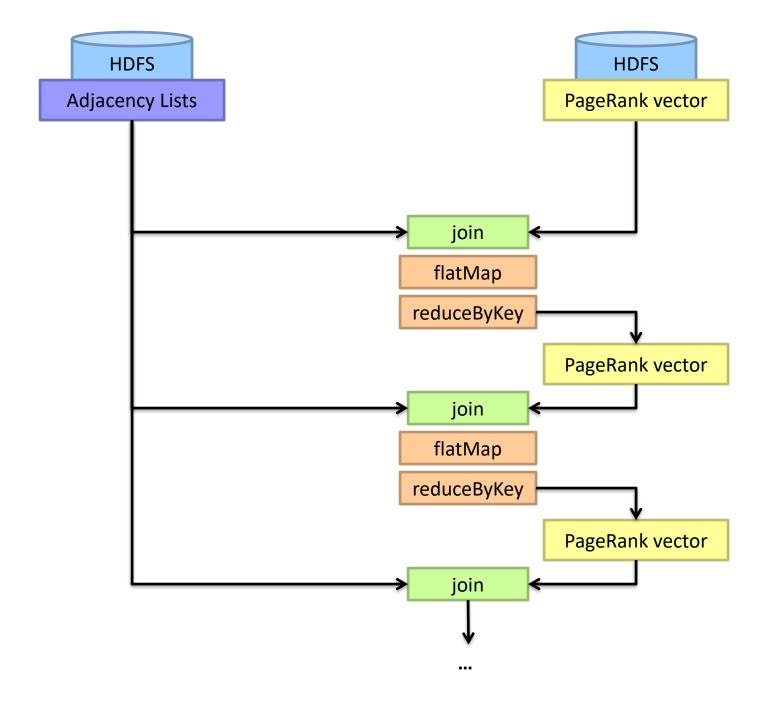


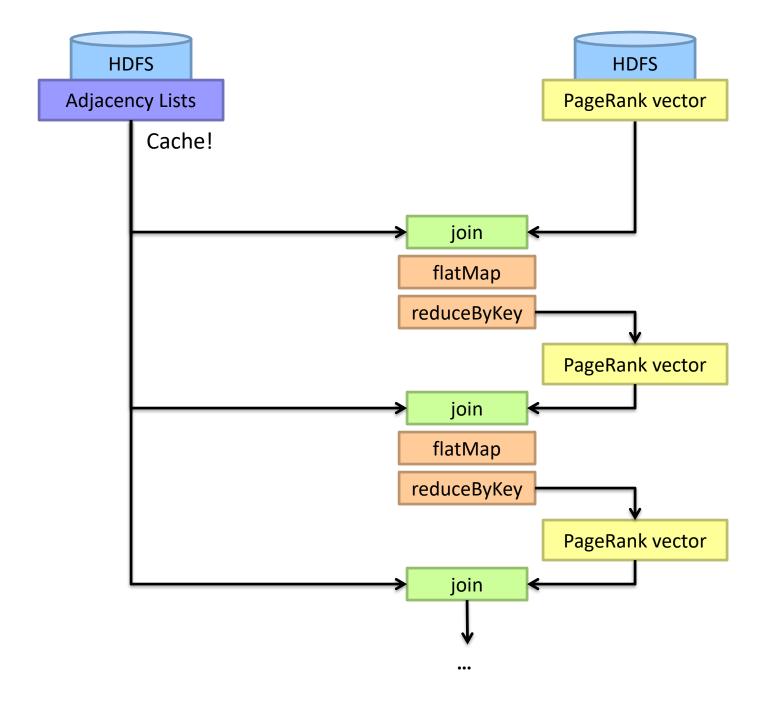
•••



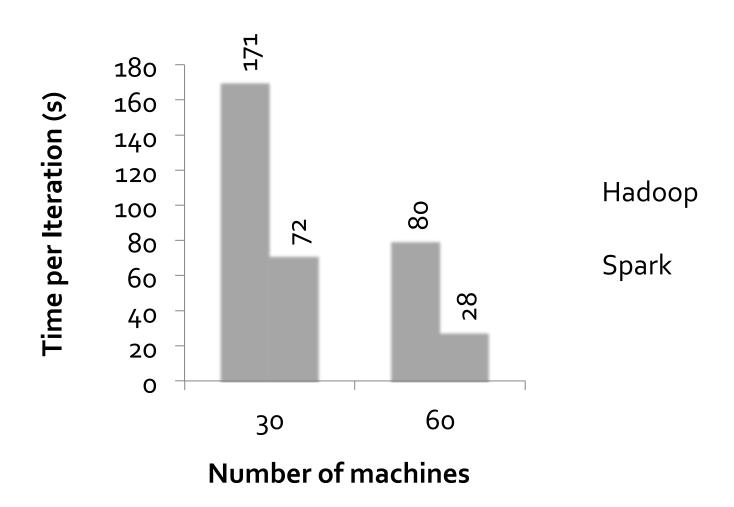








MapReduce vs. Spark



Spark to the rescue?

Java verbosity

Hadoop task startup time

Stragglers

Needless graph shuffling

Checkpointing at each iteration

