

Data-Intensive Distributed Computing

CS 431/631 451/651 (Winter 2019)

Part 4: Analyzing Graphs (1/2) February 5, 2019

Adam Roegiest Kira Systems

These slides are available at http://roegiest.com/bigdata-2019w/

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Structure of the Course

"Core" framework features and algorithm design

What's a graph?

G = (V,E), where

V represents the set of vertices (nodes) E represents the set of edges (links) Edges may be directed or undirected Both vertices and edges may contain additional information

Examples of Graphs

Hyperlink structure of the web Physical structure of computers on the Internet Interstate highway system Social networks

We're mostly interested in sparse graphs!

KONINGSBERGA

Source: Wikipedia (Kaliningrad)

Some Graph Problems

Finding shortest paths Routing Internet traffic and UPS trucks Finding minimum spanning trees Telco laying down fiber

> Finding max flow Airline scheduling

Identify "special" nodes and communities Halting the spread of avian flu

Bipartite matching

match.com

Web ranking

PageRank

What makes graphs hard?

Irregular structure Fun with data structures!

Irregular data access patterns Fun with architectures!

> Iterations Fun with optimizations!

Graphs and MapReduce (and Spark)

A large class of graph algorithms involve: Local computations at each node Propagating results: "traversing" the graph

Key questions:

How do you represent graph data in MapReduce (and Spark)? How do you traverse a graph in MapReduce (and Spark)?

Representing Graphs

Adjacency matrices Adjacency lists Edge lists

Adjacency Matrices

Represent a graph as an $n \ge n$ square matrix M n = |V| $M_{ij} = 1$ iff an edge from vertex i to j

	1	2	3	4
1	0	1	0	1
2	1	0	1	1
3	1	0	0	0
4	1	0	1	0

Adjacency Matrices: Critique

Advantages

Amenable to mathematical manipulation Intuitive iteration over rows and columns

Disadvantages

Lots of wasted space (for sparse matrices) Easy to write, hard to compute

Adjacency Lists

Take adjacency matrix... and throw away all the zeros

	1	2	3	4	
1	0	1	0	1	1: 2, 4
2	1	0	1	1	2:1,3,
3	1	0	0	0	3:1
4	1	0	1	0	4. I, J

Wait, where have we seen this before?

Adjacency Lists: Critique

Advantages

Much more compact representation (compress!) Easy to compute over outlinks

> Disadvantages Difficult to compute over inlinks

Edge Lists

Explicitly enumerate all edges

Edge Lists: Critique

Advantages Easily support edge insertions

Disadvantages Wastes spaces

Graph Partitioning

(A lot more detail later...)

Storing Undirected Graphs Standard Tricks

1. Store both edges Make sure your algorithm de-dups

2. Store one edge, e.g., (*x*, *y*) st. *x* < *y* Make sure your algorithm handles the asymmetry

Basic Graph Manipulations

Invert the graph flatMap and regroup

Adjacency lists to edge lists flatMap adjacency lists to emit tuples

Edge lists to adjacency lists groupBy

Framework does all the heavy lifting!

Arzeitanes Blacharen Magneres Blacharen Magneres Blacharen Manne Joharen Manne Joharen Mine Joharen Manne Johare

Source: http://bost.ocks.org/mike/miserables/

Co-occurrence and the second s

뒁

Magloi

pmathi

Di

in E

Source: http://bost.ocks.org/mike/miserables/

Co-occurrence of characters in Les Misérables

What does the web look like?

Analysis of a large webgraph from the common crawl: 3.5 billion pages, 129 billion links Meusel et al. Graph Structure in the Web — Revisited. WWW 2014.

Broder's Bowtie (2000) – revisited

What does the web look like? Very roughly, a scale-free network

Fraction of k nodes having k connections:

$$P(k) \sim k^{-\gamma}$$

(i.e., degree distribution follows a power law)

Figure from: Newman, M. E. J. (2005) "Power laws, Pareto distributions and Zipf's law." Contemporary Physics 46:323–351.

Figure from: Seth A. Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin. Information Network or Social Network? The Structure of the Twitter Follow Graph. WWW 2014.

What does the web look like? Very roughly, a scale-free network

Other Examples: Internet domain routers Co-author network Citation network Movie-Actor network

(In this installment of "learn fancy terms for simple ideas") **Preferential Attachment**

Also: Matthew Effect

For unto every one that hath shall be given, and he shall have abundance: but from him that hath not shall be taken even that which he hath.

- Matthew 25:29, King James Version.

BTW, how do we compute these graphs?

Count.

Source: http://www.flickr.com/photos/guvnah/7861418602/

BTW, how do we extract the webgraph? The webgraph... is big?!

A few tricks: Integerize vertices (montone minimal perfect hashing) Sort URLs Integer compression

webgraph from the common crawl: 3.5 billion pages, 129 billion links Meusel et al. Graph Structure in the Web — Revisited. WWW 2014. 58 GB!

Graphs and MapReduce (and Spark)

A large class of graph algorithms involve: Local computations at each node Propagating results: "traversing" the graph

Key questions:

How do you represent graph data in MapReduce (and Spark)? How do you traverse a graph in MapReduce (and Spark)?

Single-Source Shortest Path

Problem: find shortest path from a source node to one or more target nodes Shortest might also mean lowest weight or cost

First, a refresher: Dijkstra's Algorithm...

Example from CLR

Example from CLR

Example from CLR

Single-Source Shortest Path

Problem: find shortest path from a source node to one or more target nodes Shortest might also mean lowest weight or cost

Single processor machine: Dijkstra's Algorithm MapReduce: parallel breadth-first search (BFS)

Finding the Shortest Path

Consider simple case of equal edge weights

Solution to the problem can be defined inductively: Define: *b* is reachable from *a* if *b* is on adjacency list of *a* DISTANCETO(*s*) = 0 For all nodes *p* reachable from *s*, DISTANCETO(*p*) = 1 For all nodes *n* reachable from some other set of nodes *M*, DISTANCETO(*n*) = 1 + min(DISTANCETO(*m*), $m \in M$)

Source: Wikipedia (Wave)

Visualizing Parallel BFS

From Intuition to Algorithm

Data representation:

Key: node *n* Value: *d* (distance from start), adjacency list Initialization: for all nodes except for start node, $d = \infty$

Mapper:

 $\forall m \in adjacency \ list: emit \ (m, d + 1)$ Remember to also emit distance to yourself

Sort/Shuffle:

Groups distances by reachable nodes

Reducer:

Selects minimum distance path for each reachable node Additional bookkeeping needed to keep track of actual path

Multiple Iterations Needed

Each MapReduce iteration advances the "frontier" by one hop Subsequent iterations include more reachable nodes as frontier expands Multiple iterations are needed to explore entire graph

Preserving graph structure:

Problem: Where did the adjacency list go? Solution: mapper emits (*n*, adjacency list) as well

BFS Pseudo-Code

```
class Mapper {
 def map(id: Long, n: Node) = {
  emit(id, n) // emit graph structure
  val d = n.distance
  emit(id, d)
  for (m <- n.adjacencyList) {</pre>
   emit(m, d+1)
  }
}
class Reducer {
 def reduce(id: Long, objects: Iterable[Object]) = {
  var min = infinity
  var n = null
  for (d <- objects) {
   if (isNode(d)) n = d
   else if d < \min \min = d
  n.distance = min
  emit(id, n)
 }
```

Stopping Criterion

(equal edge weight)

How many iterations are needed in parallel BFS?

Convince yourself: when a node is first "discovered", we've found the shortest path

What does it have to do with six degrees of separation?

Practicalities of MapReduce implementation...

Implementation Practicalities

Comparison to Dijkstra

Dijkstra's algorithm is more efficient

At each step, only pursues edges from minimum-cost path inside frontier

MapReduce explores all paths in parallel Lots of "waste" Useful work is only done at the "frontier"

Why can't we do better using MapReduce?

Single Source: Weighted Edges

Now add positive weights to the edges Simple change: add weight w for each edge in adjacency list

Simple change: add weight w for each edge in adjacency list In mapper, emit $(m, d + w_p)$ instead of (m, d + 1) for each node m

That's it?

Stopping Criterion

(positive edge weight)

How many iterations are needed in parallel BFS?

Convince yourself: when a node is first "discovered", we've found the shortest path Not true!

Additional Complexities

Stopping Criterion

(positive edge weight)

How many iterations are needed in parallel BFS?

Practicalities of MapReduce implementation...

