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Structure of the Course

Analyzing Text
Analyzing Graphs
Analyzing
Relational Data
Data Mining

“Core” framework features
and algorithm design




What’s a graph?

G =(V,E), where
V represents the set of vertices (nodes)
E represents the set of edges (links)
Edges may be directed or undirected
Both vertices and edges may contain additional information

outlinks outgoing
A (outbound) edges

edges(links\ /out-degree \ /

) vertex (node)

“incident”

edges (links) in-degree

incoming
inlinks (inbound) edges



Examples of Graphs

Hyperlink structure of the web
Physical structure of computers on the Internet
Interstate highway system
Social networks

We're mostly interested in sparse graphs!
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Some Graph Problems

Finding shortest paths
Routing Internet traffic and UPS trucks

Finding minimum spanning trees
Telco laying down fiber

Finding max flow
Airline scheduling

III

ldentify “special” nodes and communities
Halting the spread of avian flu

Bipartite matching
match.com

Web ranking
PageRank



What makes graphs hard?

Irregular structure
Fun with data structures!

Irregular data access patterns
Fun with architectures!

Iterations
Fun with optimizations!



Graphs and MapReduce (and Spark)

A large class of graph algorithms involve:

Local computations at each node
Propagating results: “traversing” the graph

Key questions:

How do you represent graph data in MapReduce (and Spark)?
How do you traverse a graph in MapReduce (and Spark)?



Representing Graphs

Adjacency matrices
Adjacency lists
Edge lists



Adjacency Matrices

Represent a graph as an n x n square matrix M
n=|V|
M;; = 1 iff an edge from vertex i to j

P W N M=

R R RO
Ol O O| = N
R Ol =R O W
O| O R| k| &




Adjacency Matrices: Critique

Advantages

Amenable to mathematical manipulation
Intuitive iteration over rows and columns

Disadvantages

Lots of wasted space (for sparse matrices)
Easy to write, hard to compute



Adjacency Lists

Take adjacency matrix... and throw away all the zeros

11234
1101101 1: 2,4
2111011 :> 2:1,3,4
3:1
3/1/0[0]0
4:1, 3
41170110
. where have W
2 e this before



Adjacency Lists: Critique

Advantages

Much more compact representation (compress!)
Easy to compute over outlinks

Disadvantages
Difficult to compute over inlinks



Edge Lists

Explicitly enumerate all edges

WD

N E=1

Ol O O

R Ol L O W

Ol O| k| b

(1, 2)
(1, 4)
(2,1)
(2, 3)
(2, 4)
(3,1)
(4, 1)
(4, 3)



Edge Lists: Critique
Advantages

Easily support edge insertions

Disadvantages
Wastes spaces



Graph Partitioning

Vertex

Partitioning

A
S

Edge
Partitioning

(A lot more detail later...)



Storing Undirected Graphs
Standard Tricks

1. Store both edges
Make sure your algorithm de-dups

2. Store one edge, e.g., (x, y) st. x<y
Make sure your algorithm handles the asymmetry



Basic Graph Manipulations

Invert the graph
flatMap and regroup

Adjacency lists to edge lists
flatMap adjacency lists to emit tuples

Edge lists to adjacency lists
groupBy

Framework does all the heavy lifting!
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Co-occurrence of characters in Les Misérables
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What does the web look like?

Analysis of a large webgraph from the common crawl: 3.5 billion pages, 129 billion links
Meusel et al. Graph Structure in the Web — Revisited. WWW 2014.



Broder’s Bowtie (2000) — revisited

Tendrils

/ 164m —
4.61%

I LSCC
1,139m | 1,828 million | 215m
31.96% 51.28%

-
-
— o

Q Disconnected

Q 208m
O 5.84%



What does the web look like?

Very roughly, a scale-free network

Fraction of k nodes having k connections:

P(k) ~ k™7

(i.e., degree distribution follows a power law)
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What does the web look like?

Very roughly, a scale-free network

Other Examples:

Internet domain routers
Co-author network
Citation network
Movie-Actor network



(In this installment of “learn fancy terms for simple ideas”)

Preferential Attachment

Also:

Matthew Effect

For unto every one that hath shall be given, and he
shall have abundance: but from him that hath not
shall be taken even that which he hath.

— Matthew 25:29, King James Version.



BTW, how do we compute these graphs?



Count.

Source: http://www.flickr.com/photos/guvnah/7861418602/



BTW, how do we extract the webgraph?
The webgraph... is big?!

A few tricks:

Integerize vertices (montone minimal perfect hashing)
Sort URLs
Integer compression

webgraph from the common crawl: 3.5 billion pages, 129 billion links B\
Meusel et al. Graph Structure in the Web — Revisited. WWW 2014. 5% )



Graphs and MapReduce (and Spark)

A large class of graph algorithms involve:

Local computations at each node
Propagating results: “traversing” the graph

Key questions:

How do you represent graph data in MapReduce (and Spark)?
How do you traverse a graph in MapReduce (and Spark)?



Single-Source Shortest Path

Problem: find shortest path from a

source node to one or more target nodes
Shortest might also mean lowest weight or cost

First, a refresher: Dijkstra’s Algorithm...



Dijkstra’s Algorithm Example

Example from CLR



Dijkstra’s Algorithm Example

10 > 00

Example from CLR



Dijkstra’s Algorithm Example

Example from CLR



Dijkstra’s Algorithm Example

Example from CLR



Dijkstra’s Algorithm Example

Example from CLR



Dijkstra’s Algorithm Example




Single-Source Shortest Path

Problem: find shortest path from a

source node to one or more target nodes
Shortest might also mean lowest weight or cost

Single processor machine: Dijkstra’s Algorithm
MapReduce: parallel breadth-first search (BFS)



Finding the Shortest Path

Consider simple case of equal edge weights

Solution to the problem can be defined inductively:

Define: b is reachable from a if b is on adjacency list of a
DISTANCETO(s) =0

For all nodes p reachable from s,
DISTANCETO(p) = 1

For all nodes n reachable from some other set of nodes M,
DISTANCETO(n) = 1 + min(DISTANCETO(m), m € M)
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Source: Wikipedia (Wave)



Visualizing Parallel BFS




From Intuition to Algorithm

Data representation:

Key: node n
Value: d (distance from start), adjacency list
Initialization: for all nodes except for start node, d = o

Mapper:
Vm € adjacency list: emit (m, d + 1)
Remember to also emit distance to yourself

Sort/Shuffle:

Groups distances by reachable nodes

Reducer:

Selects minimum distance path for each reachable node
Additional bookkeeping needed to keep track of actual path



Multiple Iterations Needed

Each MapReduce iteration advances the “frontier” by one hop

Subsequent iterations include more reachable nodes as frontier expands
Multiple iterations are needed to explore entire graph

Preserving graph structure:

Problem: Where did the adjacency list go?
Solution: mapper emits (n, adjacency list) as well



BFS Pseudo-Code

class Mapper {
def map(id: Long, n: Node) = {
emit(id, n) // emit graph structure
val d = n.distance
emit(id, d)
for (m <- n.adjacencylList) {
emit(m, d+1)

}

}

class Reducer {
def reduce(id: Long, objects: Iterable[Object]) = {
var min = infinity
var n = null
for (d <- objects) {
if (isNode(d)) n=d
elseifd <min min=d
}
n.distance = min
emit(id, n)
}
}



Stopping Criterion
(equal edge weight)

How many iterations are needed in parallel BFS?

Convince yourself: when a node is first “discovered”,
we’ve found the shortest path

What does it have to do with
six degrees of separation?

Practicalities of MapReduce implementation...



Implementation Practicalities

HDFS

map

- T

HDFS




Comparison to Dijkstra

Dijkstra’s algorithm is more efficient
At each step, only pursues edges from minimum-cost path inside frontier

MapReduce explores all paths in parallel

Lots of “waste”
Useful work is only done at the “frontier”

Why can’t we do better using MapReduce?



Single Source: Weighted Edges

Now add positive weights to the edges
Simple change: add weight w for each edge in adjacency list

Simple change: add weight w for each edge in adjacency list
In mapper, emit (m, d + w,) instead of (m, d + 1) for each node m

That’s it?



Stopping Criterion

(positive edge weight)

How many iterations are needed in parallel BFS?

Convince yourself: when a node is first “discovered”,

we’ve found the shortest path
ue:
ot ¥



Additional Complexities



Stopping Criterion

(positive edge weight)

How many iterations are needed in parallel BFS?

Practicalities of MapReduce implementation...






