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Structure of the Course

ñCoreò framework features 

and algorithm design



We have a collection of records,
want to apply a bunch of operations 

to compute some result

What are the dataflow operators?

Data-Parallel Dataflow Languages

{ǇŀǊƪ ƛǎ ŀ ōŜǘǘŜǊ aŀǇwŜŘǳŎŜ ǿƛǘƘ ŀ ŦŜǿ ƳƻǊŜ άƴƛŎŜǘƛŜǎέΗ

aƻǾƛƴƎ ŦƻǊǿŀǊŘΥ ƎŜƴŜǊƛŎ ǊŜŦŜǊŜƴŎŜ ǘƻ άƳŀǇǇŜǊέ ŀƴŘ άǊŜŘǳŎŜǊǎέ
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Source: http://www.flickr.com/photos/guvnah/7861418602/

Count.



(Efficiently)
Count

class Mapper {
def map(key: Long, value: String) = {
for (word <- tokenize(value)) {
emit(word, 1)

}
}

}

class Reducer {
def reduce(key: String, values: Iterable[Int]) = {
for (value <- values) {
sum += value

}
emit(key, sum)

}
}



Count.

Source: http://www.flickr.com/photos/guvnah/7861418602/ https://twitter.com/mrogati/status/481927908802322433

Divide.



Pairs. Stripes.
{ŜŜƳǎ ǇǊŜǘǘȅ ǘǊƛǾƛŀƭΧ

aƻǊŜ ǘƘŀƴ ŀ άǘƻȅ ǇǊƻōƭŜƳέΚ
Answer: language models



What are they?
How do we build them?
How are they useful?

Language Models



[chain rule]

Is this tractable?

Language Models



Basic idea:limit history to fixed number of (Nς1) words
(Markov Assumption)

N=1: Unigram Language Model

Approximating Probabilities: N-Grams



N=2: Bigram Language Model

Approximating Probabilities: N-Grams

Basic idea:limit history to fixed number of (Nς1) words
(Markov Assumption)



N=3: Trigram Language Model

Approximating Probabilities: N-Grams

Basic idea:limit history to fixed number of (Nς1) words
(Markov Assumption)



Building N-Gram Language Models

We already know how to do this in MapReduce!

Compute maximum likelihood estimates (MLE) for 
Individual n-gram probabilities

Unigram

Bigram

Generalizes to higher-order n-grams
State of the art models use ~5-grams



The two commandments of estimating 
ǇǊƻōŀōƛƭƛǘȅ ŘƛǎǘǊƛōǳǘƛƻƴǎΧ

Source: Wikipedia (Moses)



Source: http://www.flickr.com/photos/37680518@N03/7746322384/

Probabilities must sum up to one



Source: http://www.flickr.com/photos/brettmorrison/3732910565/

What? Why?

Thou shalt smooth



Source: https://www.flickr.com/photos/avlxyz/6898001012/



P(   ) > P (   )

P(        ) ? P (        )



Note: We donΩt ever cross sentence boundaries

I am Sam
Sam I am
I do not like green eggs and ham

<s>
<s>
<s>

</s>
</s>

</s>

Training Corpus

P( I | <s> ) = 2/3 = 0.67 P( Sam | <s> ) = 1/3 = 0.33
P( am | I ) = 2/3 = 0.67 P( do | I ) = 1/3 = 0.33
P( </s> | Sam )= 1/2 = 0.50  P( Sam | am) = 1/2 = 0.50
...

Bigram Probability Estimates

Example: Bigram Language Model



P(I like ham)

= P( I | <s> ) P( like | I ) P( ham | like ) P( </s> | ham )

= 0

P( I | <s> ) = 2/3 = 0.67 P( Sam | <s> ) = 1/3 = 0.33
P( am | I ) = 2/3 = 0.67 P( do | I ) = 1/3 = 0.33
P( </s> | Sam )= 1/2 = 0.50  P( Sam | am) = 1/2 = 0.50
...

Bigram Probability Estimates

Issue: Sparsity!

Data Sparsity



Thou shalt smooth!

Zeros are bad for any statistical estimator
Need better estimators because MLEs give us a lot of zeros

! ŘƛǎǘǊƛōǳǘƛƻƴ ǿƛǘƘƻǳǘ ȊŜǊƻǎ ƛǎ άǎƳƻƻǘƘŜǊέ

The Robin Hood Philosophy: Take from the rich (seen n-grams)
and give to the poor (unseen n-grams)

Need better estimators because MLEs give us a lot of zeros
A distribution without zeros is άsmootherέ

Lots of techniques:
Laplace, Good-Turing, Katz backoff, Jelinek-Mercer

Kneser-Ney represents best practice



Laplace Smoothing

Simplest and oldest smoothing technique
Just add 1 to all n-gram counts including the unseen ones

So, what do the revised estimates look like?



Unigrams

Bigrams

²Ƙŀǘ ƛŦ ǿŜ ŘƻƴΩǘ ƪƴƻǿ V?

/ŀǊŜŦǳƭΣ ŘƻƴΩǘ ŎƻƴŦǳǎŜ ǘƘŜ NΩǎΗ

Laplace Smoothing


