
Data-Intensive Distributed Computing

Part 3: Analyzing Text (1/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Winter 2019)

Adam Roegiest
Kira Systems

January 29, 2019

These slides are available at http:// roegiest.com/bigdata-2019w/

Structure of the Course

ñCoreò framework features

and algorithm design

We have a collection of records,
want to apply a bunch of operations

to compute some result

What are the dataflow operators?

Data-Parallel Dataflow Languages

{ǇŀǊƪ ƛǎ ŀ ōŜǘǘŜǊ aŀǇwŜŘǳŎŜ ǿƛǘƘ ŀ ŦŜǿ ƳƻǊŜ άƴƛŎŜǘƛŜǎέΗ

aƻǾƛƴƎ ŦƻǊǿŀǊŘΥ ƎŜƴŜǊƛŎ ǊŜŦŜǊŜƴŎŜ ǘƻ άƳŀǇǇŜǊέ ŀƴŘ άǊŜŘǳŎŜǊǎέ

Structure of the Course

ñCoreò framework features

and algorithm design

A
n
a
ly

z
in

g
T

e
x
t

A
n
a
ly

z
in

g
G

ra
p
h
s

A
n
a
ly

z
in

g

R
e
la

ti
o
n
a
l
D

a
ta

D
a
ta

 M
in

in
g

Source: http://www.flickr.com/photos/guvnah/7861418602/

Count.

(Efficiently)
Count

class Mapper {
def map(key: Long, value: String) = {
for (word <- tokenize(value)) {
emit(word, 1)

}
}

}

class Reducer {
def reduce(key: String, values: Iterable[Int]) = {
for (value <- values) {
sum += value

}
emit(key, sum)

}
}

Count.

Source: http://www.flickr.com/photos/guvnah/7861418602/ https://twitter.com/mrogati/status/481927908802322433

Divide.

Pairs. Stripes.
{ŜŜƳǎ ǇǊŜǘǘȅ ǘǊƛǾƛŀƭΧ

aƻǊŜ ǘƘŀƴ ŀ άǘƻȅ ǇǊƻōƭŜƳέΚ
Answer: language models

What are they?
How do we build them?
How are they useful?

Language Models

[chain rule]

Is this tractable?

Language Models

Basic idea:limit history to fixed number of (Nς1) words
(Markov Assumption)

N=1: Unigram Language Model

Approximating Probabilities: N-Grams

N=2: Bigram Language Model

Approximating Probabilities: N-Grams

Basic idea:limit history to fixed number of (Nς1) words
(Markov Assumption)

N=3: Trigram Language Model

Approximating Probabilities: N-Grams

Basic idea:limit history to fixed number of (Nς1) words
(Markov Assumption)

Building N-Gram Language Models

We already know how to do this in MapReduce!

Compute maximum likelihood estimates (MLE) for
Individual n-gram probabilities

Unigram

Bigram

Generalizes to higher-order n-grams
State of the art models use ~5-grams

The two commandments of estimating
ǇǊƻōŀōƛƭƛǘȅ ŘƛǎǘǊƛōǳǘƛƻƴǎΧ

Source: Wikipedia (Moses)

Source: http://www.flickr.com/photos/37680518@N03/7746322384/

Probabilities must sum up to one

Source: http://www.flickr.com/photos/brettmorrison/3732910565/

What? Why?

Thou shalt smooth

Source: https://www.flickr.com/photos/avlxyz/6898001012/

P() > P ()

P() ? P ()

Note: We donΩt ever cross sentence boundaries

I am Sam
Sam I am
I do not like green eggs and ham

<s>
<s>
<s>

</s>
</s>

</s>

Training Corpus

P(I | <s>) = 2/3 = 0.67 P(Sam | <s>) = 1/3 = 0.33
P(am | I) = 2/3 = 0.67 P(do | I) = 1/3 = 0.33
P(</s> | Sam)= 1/2 = 0.50 P(Sam | am) = 1/2 = 0.50
...

Bigram Probability Estimates

Example: Bigram Language Model

P(I like ham)

= P(I | <s>) P(like | I) P(ham | like) P(</s> | ham)

= 0

P(I | <s>) = 2/3 = 0.67 P(Sam | <s>) = 1/3 = 0.33
P(am | I) = 2/3 = 0.67 P(do | I) = 1/3 = 0.33
P(</s> | Sam)= 1/2 = 0.50 P(Sam | am) = 1/2 = 0.50
...

Bigram Probability Estimates

Issue: Sparsity!

Data Sparsity

Thou shalt smooth!

Zeros are bad for any statistical estimator
Need better estimators because MLEs give us a lot of zeros

! ŘƛǎǘǊƛōǳǘƛƻƴ ǿƛǘƘƻǳǘ ȊŜǊƻǎ ƛǎ άǎƳƻƻǘƘŜǊέ

The Robin Hood Philosophy: Take from the rich (seen n-grams)
and give to the poor (unseen n-grams)

Need better estimators because MLEs give us a lot of zeros
A distribution without zeros is άsmootherέ

Lots of techniques:
Laplace, Good-Turing, Katz backoff, Jelinek-Mercer

Kneser-Ney represents best practice

Laplace Smoothing

Simplest and oldest smoothing technique
Just add 1 to all n-gram counts including the unseen ones

So, what do the revised estimates look like?

Unigrams

Bigrams

²Ƙŀǘ ƛŦ ǿŜ ŘƻƴΩǘ ƪƴƻǿ V?

/ŀǊŜŦǳƭΣ ŘƻƴΩǘ ŎƻƴŦǳǎŜ ǘƘŜ NΩǎΗ

Laplace Smoothing

