
Data-Intensive Distributed Computing

Part 2: From MapReduce to Spark (1/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Winter 2019)

Adam Roegiest
Kira Systems

January 22, 2019

These slides are available at http://roegiest.com/bigdata-2019w/

Source: Wikipedia (The Scream)

Debugging at Scale

Real-world data is messy!
There’s no such thing as “consistent data”

Watch out for corner cases
Isolate unexpected behavior, bring local

Works on small datasets, won’t scale… why?
Memory management issues (buffering and object creation)

Too much intermediate data
Mangled input records

Source: Google

The datacenter is the computer!
What’s the instruction set?

Source: Wikipedia (ENIAC)

So you like programming in assembly?

(circa 2007)
Hadoop is great, but it’s really waaaaay too low level!

Source: Wikipedia (DeLorean time machine)

Design a higher-level language

Write a compiler

What’s the solution?

Hadoop is great, but it’s really waaaaay too low level!
(circa 2007)

What we really need is SQL!
What we really need is a

scripting language!

Answer: Answer:

SQL Pig Scripts

Both open-source projects today!

“On the first day of logging the Facebook clickstream, more than 400 gigabytes of data
was collected. The load, index, and aggregation processes for this data set really taxed the
Oracle data warehouse. Even after significant tuning, we were unable to aggregate a day
of clickstream data in less than 24 hours.”

Jeff Hammerbacher, Information Platforms and the Rise of the Data Scientist.
In, Beautiful Data, O’Reilly, 2009.

Source: Wikipedia (Pig)

Pig!

User Url Time

Amy cnn.com 8:00

Amy bbc.com 10:00

Amy flickr.com 10:05

Fred cnn.com 12:00

Url Category PageRank

cnn.com News 0.9

bbc.com News 0.8

flickr.com Photos 0.7

espn.com Sports 0.9

Visits URL Info

Task: Find the top 10 most visited pages in each category

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig: Example

visits = load ‘/data/visits’ as (user, url, time);

gVisits = group visits by url;

visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;

topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig: Example Script

load visits

group by url

foreach url
generate count load urlInfo

join on url

group by category

foreach category
generate top(urls, 10)

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig Query Plan

load visits

group by url

foreach url
generate count load urlInfo

join on url

group by category

foreach category
generate top(urls, 10)

Map1

Reduce1 Map2

Reduce2

Map3

Reduce3

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig: MapReduce Execution

visits = load ‘/data/visits’ as (user, url, time);

gVisits = group visits by url;

visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;

topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

But isn’t Pig slower?
Sure, but c can be slower than assembly too…

Pig: Basics

Data model
atoms
tuples
bags
maps
json

Sequence of statements manipulating relations (aliases)

Pig: Common Operations

LOAD: load data (from HDFS)

FOREACH … GENERATE: per tuple processing

FILTER: discard unwanted tuples

GROUP/COGROUP: group tuples

JOIN: relational join

STORE: store data (to HDFS)

(1, 2, 3)
(4, 2, 1)
(8, 3, 4)
(4, 3, 3)
(7, 2, 5)
(8, 4, 3)

A = LOAD 'myfile.txt’ AS (f1: int, f2: int, f3: int);

X = GROUP A BY f1;

(1, {(1, 2, 3)})
(4, {(4, 2, 1), (4, 3, 3)})
(7, {(7, 2, 5)})
(8, {(8, 3, 4), (8, 4, 3)})

Pig: GROUPing

A:
(1, 2, 3)
(4, 2, 1)
(8, 3, 4)
(4, 3, 3)
(7, 2, 5)
(8, 4, 3)

B:
(2, 4)
(8, 9)
(1, 3)
(2, 7)
(2, 9)
(4, 6)
(4, 9)

X = COGROUP A BY $0, B BY $0;

(1, {(1, 2, 3)}, {(1, 3)})
(2, {}, {(2, 4), (2, 7), (2, 9)})
(4, {(4, 2, 1), (4, 3, 3)}, {(4, 6),(4, 9)})
(7, {(7, 2, 5)}, {})
(8, {(8, 3, 4), (8, 4, 3)}, {(8, 9)})

Pig: COGROUPing

X = JOIN A BY $0, B BY $0;

(1,2,3,1,3)
(4,2,1,4,6)
(4,3,3,4,6)
(4,2,1,4,9)
(4,3,3,4,9)
(8,3,4,8,9)
(8,4,3,8,9)

Pig: JOINing

A:
(1, 2, 3)
(4, 2, 1)
(8, 3, 4)
(4, 3, 3)
(7, 2, 5)
(8, 4, 3)

B:
(2, 4)
(8, 9)
(1, 3)
(2, 7)
(2, 9)
(4, 6)
(4, 9)

Pig UDFs

User-defined functions:
Java

Python
JavaScript

Ruby
…

UDFs make Pig arbitrarily extensible
Express “core” computations in UDFs

Take advantage of Pig as glue code for scale-out plumbing

Source: Google

The datacenter is the computer!

What’s the instruction set?
Okay, let’s fix this!

Analogy: NAND Gates are universal

Let’s design a data processing
language “from scratch”!

(Why is MapReduce the way it is?)

What ops do you need?

We have a collection of records,
want to apply a bunch of operations

to compute some result

Assumption: static collection of records

Data-Parallel Dataflow Languages

(what’s the limitation here?)

We need per-record processing

r'n-1 rnr’3 r’4r’1 r'2
…

mapmapmap …

rn-1 rnr3 r4r1 r2
…

Remarks: Easy to parallelize maps,
record to “mapper” assignment is an implementation detail

(If we want more than embarrassingly parallel processing)
Map alone isn’t enough

Where do intermediate results go?
We need an addressing mechanism!

What’s the semantics of the group by?

Once we resolve the addressing, apply another computation
That’s what we call reduce!

(What’s with the sorting then?)

MapReduce

reducereducereduce

r'n-1 rnr’3 r’4r’1 r'2

rn-1 rnr3 r4r1 r2

mapmapmap …

…

…

…

MapReduce is the minimally “interesting” dataflow!

map
f: (K1, V1)

⇒ List[(K2, V2)]

List[(K1,V1)]

List[K3,V3])

reduce
g: (K2, Iterable[V2]) ⇒ List[(K3,

V3)]

MapReduce

(note we’re abstracting the “data-parallel” part)

reduce

map

HDFS

HDFS

reduce

map

HDFS

reduce

map

HDFS

reduce

map

HDFS

What’s wrong?

MapReduce Workflows

map

HDFS

HDFS

map

HDFS

map

HDFS

map

HDFS

✔ ✗

Want MM?

reduce

map

HDFS

HDFS

reduce

map

HDFS

reduce

map

reduce

HDFS

HDFS

✔ ✗

Want MRR?

Source: Google

The datacenter is the computer!

Let’s enrich the instruction set!

Source: Isard et al. (2007) Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. EuroSys.

Dryad: Graph Operators

Source: Isard et al. (2007) Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. EuroSys.

The Dryad system organization. The job manager (JM) consults the name server (NS) to discover the list of available
computers. It maintains the job graph and schedules running vertices (V) as computers become available using the
daemon (D) as a proxy. Vertices exchange data through files, TCP pipes, or shared-memory channels. The shaded
bar indicates the vertices in the job that are currently running.

Dryad: Architecture

Source: Isard et al. (2007) Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. EuroSys.

Dryad: Cool Tricks

Channel: abstraction for vertex-to-vertex communication
File

TCP pipe
Shared memory

Runtime graph refinement
Size of input is not known until runtime

Automatically rewrite graph based on invariant properties

Gr aphBui l der XSet = modul eX̂ N;
Gr aphBui l der DSet = modul eD̂ N;
Gr aphBui l der MSet = modul eM̂ (N*4) ;
Gr aphBui l der SSet = modul eŜ (N*4) ;
Gr aphBui l der YSet = modul eŶ N;
Gr aphBui l der HSet = modul eĤ 1;

Gr aphBui l der XI nput s = (ugr i z1 >= XSet) | | (nei ghbor >= XSet) ;
Gr aphBui l der YI nput s = ugr i z2 >= YSet ;

Gr aphBui l der XToY = XSet >= DSet >> MSet >= SSet ;
f or (i = 0; i < N*4; ++i)
{

XToY = XToY | | (SSet . Get Ver t ex(i) >= YSet . Get Ver t ex(i / 4)) ;
}

Gr aphBui l der YToH = YSet >= HSet ;
Gr aphBui l der HOut put s = HSet >= out put ;

Gr aphBui l der f i nal = XI nput s | | YI nput s | | XToY | | YToH | | HOut put s;

Figure 4: An example graph builder program. The communication graph generated by this program is shown in Figure 2.

C h an n e l p r ot ocol D iscu ssion

File (t he default) P reserved after vert ex execut ion

unt il t he job complet es.

TCP pipe Requires no disk accesses, but

both end-point vert ices must be

scheduled to run at t he same

t ime.

Shared-memory

FIFO

Ext remely low communicat ion

cost , but end-point vert ices must

run within the same process.

Table 1: Channel types.

encapsulat ed acyclic subgraphs. However, allowing the de-

veloper to use pipes and “visible” FIFOs can cause dead-

locks. Any connected component of vert ices communicat ing

using pipes or FIFOs must all be scheduled in processes that

are concurrent ly execut ing, but t his becomes impossible if

t he syst em runs out of available computers in the clust er.

This breaks the abst ract ion that t he user need not know

the physical resources of t he syst em when writ ing the appli-

cat ion. We believe that it is a wort hwhile t rade-off, since, as

report ed in our experiment s in Sect ion 6, t he result ing per-

formance gains can be subst ant ial. Note also that t he sys-

t em could always avoid deadlock by “downgrading” a pipe

channel to a t emporary file, at t he expense of int roducing

an unexpected performance cliff.

3.5 Job inputs and outputs
Large input files are typically part it ioned and dist ribut ed

across the computers of t he clust er. It is t herefore natural t o

group a logical input into a graph G = VP ,∅,∅, VP where

VP is a sequence of “virt ual” vert ices corresponding to the

part it ions of t he input . Similarly on job complet ion a set

of output part it ions can be logically concat enat ed to form a

single named dist ribut ed file. An applicat ion will generally

int errogate it s input graphs to read the number of part it ions

at run t ime and automat ically generat e the appropriat ely

replicat ed graph.

3.6 Job Stages
When the graph is const ruct ed every vert ex is placed in

a “st age” t o simplify job management . The st age topology

can be seen as a “skeleton” or summary of the overall job,

and the st age topology of our example Skyserver query ap-

plicat ion is shown in Figure 5. Each dist inct type of vert ex

is grouped into a separat e st age. Most st ages are connect ed

using the >= operator, while D is connected to M using the

>> operator. The skeleton is used as a guide for generat ing

summaries when monitoring a job, and can also be exploit ed

by the automat ic opt imizat ions described in Sect ion 5.2.

4. WRITING A VERTEX PROGRAM

D

M

S

Y

U

U N

H

X

Figure 5: The stages
of the Dryad compu-
tation from Figure 2.
Section 3.6 has details.

The primary AP Is for writ ing a

Dryad vert ex program are exposed

through C+ + base classes and ob-

ject s. It was a design requirement

for Dryad vert ices t o be able to incor-

porat e legacy source and libraries, so

we deliberat ely avoided adopt ing any

Dryad-specific language or sandbox-

ing rest rict ions. Most of the exist ing

code that we ant icipat e int egrat ing

into vert ices is writ t en in C+ + , but

it is st raight forward to implement

AP I wrappers so that developers can

writ e vert ices in other languages, for

example C# . There is also significant

value for some domains in being able

to run unmodified legacy execut ables

in vert ices, and so we support t his as

explained in Sect ion 4.2 below.

4.1 Vertex execution
Dryad includes a runt ime library

that is responsible for set t ing up and

execut ing vert ices as part of a dis-

t ribut ed computat ion. As out lined in

Sect ion 3.1 the runt ime receives a clo-

sure from the job manager describing

the vert ex to be run, and URIs de-

scribing t he input and output chan-

nels t o connect t o it . There is cur-

rent ly no type-checking for channels

and the vert ex must be able to det er-

mine, eit her st at ically or from the invocat ion parameters,

t he types of the it ems that it is expect ed to read and writ e

Source: Isard et al. (2007) Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. EuroSys.

Dryad: Sample Program

Sound familiar?

Source: Yu et al. (2008) DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing Using a High-Level Language. OSDI.

DryadLINQ

LINQ = Language INtegrated Query
.NET constructs for combining imperative and declarative programming

Developers write in DryadLINQ
Program compiled into computations that run on Dryad

Design a higher-level language

Write a compiler

What’s the solution?

PartitionedTable<LineRecord> inputTable =
PartitionedTable.Get<LineRecord>(uri);

IQueryable<string> words = inputTable.SelectMany(x => x.line.Split(' '));
IQueryable<IGrouping<string, string>> groups = words.GroupBy(x => x);
IQueryable<Pair> counts = groups.Select(x => new Pair(x.Key, x.Count()));
IQueryable<Pair> ordered = counts.OrderByDescending(x => x.Count);
IQueryable<Pair> top = ordered.Take(k);

a = load ’file.txt' as (text: chararray);
b = foreach a generate flatten(TOKENIZE(text)) as term;
c = group b by term;
d = foreach c generate group as term, COUNT(b) as count;

store d into 'cnt';

Compare:

Compare and contrast…

DryadLINQ: Word Count

Source: Isard et al. (2007) Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. EuroSys.

What happened to Dryad?

The Dryad system organization. The job manager (JM) consults the name server (NS) to discover the list of available
computers. It maintains the job graph and schedules running vertices (V) as computers become available using the
daemon (D) as a proxy. Vertices exchange data through files, TCP pipes, or shared-memory channels. The shaded
bar indicates the vertices in the job that are currently running.

We have a collection of records,
want to apply a bunch of operations

to compute some result

What are the dataflow operators?

Data-Parallel Dataflow Languages

Spark
Answer to “What’s beyond MapReduce?”

Brief history:
Developed at UC Berkeley AMPLab in 2009

Open-sourced in 2010
Became top-level Apache project in February 2014

Commercial support provided by DataBricks

Google Trends

Source: Datanami (2014): http://www.datanami.com/2014/11/21/spark-just-passed-hadoop-popularity-web-heres/

November 2014

Spark vs. Hadoop

What’s an RDD?
Resilient Distributed Dataset (RDD)

Much more next session…

map
f: (K1, V1)

⇒ List[(K2, V2)]

List[(K1,V1)]

List[K3,V3])

reduce
g: (K2, Iterable[V2]) ⇒ List[(K3,

V3)]

MapReduce

RDD[T]

RDD[T]

filter
f: (T) ⇒
Boolean

map
f: (T)
⇒ U

RDD[T]

RDD[U]

flatMap
f: (T) ⇒ TraversableOnce[U]

RDD[T]

RDD[U]

mapPartitions
f: (Iterator[T])
⇒ Iterator[U]

RDD[T]

RDD[U]

(Not meant to be exhaustive)

Map-like Operations

RDD[(K, V)]

RDD[(K, Iterable[V])]

groupByKey
reduceByKey

f: (V, V) ⇒ V

RDD[(K, V)]

RDD[(K, V)]

RDD[(K, V)]

aggregateByKey
seqOp: (U, V) ⇒ U, combOp: (U,

U) ⇒ U

RDD[(K, U)]

(Not meant to be exhaustive)

Reduce-like Operations

RDD[(K, V)]

RDD[(K, V)]

sort

(Not meant to be exhaustive)

RDD[(K, V)]

RDD[(K, V)]

repartitionAnd
SortWithinPartitions

Sort Operations

join

RDD[(K, V)]

RDD[(K, (V, W))]

RDD[(K, W)] RDD[(K, V)]

RDD[(K, (Iterable[V], Iterable[W]))]

cogroup

RDD[(K, W)]

(Not meant to be exhaustive)

Join-like Operations

leftOuterJoin

RDD[(K, V)]

RDD[(K, (V, Option[W]))]

RDD[(K, W)] RDD[(K, V)]

RDD[(K, (Option[V], Option[W]))]

fullOuterJoin

RDD[(K, W)]

(Not meant to be exhaustive)

Join-like Operations

RDD[T]

RDD[T]

union

RDD[T]

RDD[T]

RDD[T]

intersection

RDD[T]

(Not meant to be exhaustive)

Set-ish Operations

RDD[(T, U)]

RDD[T]

cartesian

RDD[U]RDD[T]

RDD[T]

distinct

(Not meant to be exhaustive)

Set-ish Operations

flatMap
f: (T) ⇒

TO[(K,V)]

RDD[T]

reduceByKey
f: (V, V) ⇒ V

RDD[(K, V)]

Not quite…

map
f: (T) ⇒

(K,V)

RDD[T]

reduceByKey
f: (V, V) ⇒ V

RDD[(K, V)]

MapReduce in Spark?

groupByKey

flatMap
f: (T) ⇒

TO[(K,V)]

RDD[T]

map
f: ((K, Iter[V]))
⇒ (R,S)

RDD[(R, S)]

mapPartitions
f: (Iter[T])
⇒ Iter[(K,V)]

RDD[T]

groupByKey

map
f: ((K, Iter[V]))
⇒ (R,S)

RDD[(R, S)]

Still not quite…

MapReduce in Spark?

val textFile = sc.textFile(args.input())

textFile
.flatMap(line => tokenize(line))
.map(word => (word, 1))
.reduceByKey(_ + _)
.saveAsTextFile(args.output())

(x, y) => x + y

Spark Word Count

a._1Aside: Scala tuple access notation, e.g.,

val textFile = sc.textFile(args.input())

textFile
.map(object mapper {

def map(key: Long, value: Text) =
tokenize(value).foreach(word => write(word, 1))

})
.reduce(object reducer {

def reduce(key: Text, values: Iterable[Int]) = {
var sum = 0
for (value <- values) sum += value
write(key, sum)

})
.saveAsTextFile(args.output())

Don’t focus on Java verbosity!

Next Time…

What’s an RDD?

How does Spark actually work?

Algorithm design: redux

Meanwhile, at 1600 Amphitheatre Parkway…

Sawzall – circa 2003

Lumberjack – circa ??
Flume(Java) – circa 2009

Cloud Dataflow (Flume + MillWheel) – circa 2014

Flume(Java)

Core data types
PCollection<T> - a (possibly huge) immutable bag of elements of type T

PTable<K, V> - a (possibly huge) immutable bag of key-value pairs

Hmm… sounds suspiciously familiar…

Flume(Java)
Primitive operations

parallelDo
f: (T) ⇒ S

PCollection<T>

PCollection<S>

PCollection<String> words =
lines.parallelDo(new DoFn<String,String>() {

void process(String line, EmitFn<String> emitFn) {
for (String word : splitIntoWords(line)) {

emitFn.emit(word);
}

}
}, collectionOf(strings()));

Hmm… looks suspiciously familiar…

Flume(Java)

groupByKey

PTable<K, V>

PTable<K,
Collection<V>>

PTable<URL,DocInfo> backlinks =
docInfos.parallelDo(new DoFn<DocInfo, Pair<URL,DocInfo>>() {

void process(DocInfo docInfo, EmitFn<Pair<URL,DocInfo>> emitFn) {
for (URL targetUrl : docInfo.getLinks()) {

emitFn.emit(Pair.of(targetUrl, docInfo));
}

}
}, tableOf(recordsOf(URL.class), recordsOf(DocInfo.class)));

PTable<URL,Collection<DocInfo>> referringDocInfos =
backlinks.groupByKey();

Primitive operations

Hmm… looks suspiciously familiar…

Flume(Java)

combineValues
f: (V, V)
⇒ V

PTable<K,
Collection<V>>

PTable<K, V>

PTable<String,Integer> wordsWithOnes =
words.parallelDo(

new DoFn<String, Pair<String,Integer>>() {
void process(String word, EmitFn<Pair<String,Integer>> emitFn) {

emitFn.emit(Pair.of(word, 1));
}

}, tableOf(strings(), ints()));

PTable<String,Collection<Integer>> groupedWordsWithOnes =
wordsWithOnes.groupByKey();

PTable<String,Integer> wordCounts =
groupedWordsWithOnes.combineValues(

new DoFn<Pair<String,Collection<Integer>>, Pair<String,Integer>>() {
void process(Pair<String,Collection<Integer>> pair,

EmitFn<Pair<String,Integer>> emitFn) {
int sum = 0;
for (Integer val: pair.getValue()) {

sum += val;
}
emitFn.emit(Pair.of(pair.getKey(), sum));

}
}, tableOf(strings(), ints()));

Primitive operations

Hmm… looks suspiciously familiar…

We have a collection of records,
want to apply a bunch of operations

to compute some result

Assumption: static collection of records

Data-Parallel Dataflow Languages

What if this assumption is violated?

Pig, Dryad(LINQ), Flume(Java), Spark
are all variations on a theme!

Source: Wikipedia (The Scream)

Remember: CS 451/651 Assignment 1 due 2:30pm Thursday, Jan 24 –
You must tell us if you wish to take the late penalty.

