
Data-Intensive Distributed Computing

Part 1: MapReduce Algorithm Design (2/4)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Winter 2019)

Adam Roegiest
Kira Systems

January 10, 2019

These slides are available at http://roegiest.com/bigdata-2019w/

RTFM you must

Announcements

A0 finalized for all sections

CS 431/631 Only: If you want a challenge, you may elect to do all of the
CS 451 assignments instead of the six CS 431 assignments.

This is a one-way road. No switching back.

Agenda for Today

Why big data?
Hadoop walkthrough

Why big data?

Execution

Infrastructure

Analytics

Infrastructure

Data Science

Tools

Th
is

 C
o

u
rs

e
“big data stack”

Source: Wikipedia (Everest)

Why big data? Science
Business
Society

Emergence of the 4th Paradigm

Data-intensive e-Science
Maximilien Brice, © CERN

Science

Maximilien Brice, © CERN

Maximilien Brice, © CERN

Source: Wikipedia (DNA)

GATGCTTACTATGCGGGCCCC

CGGTCTAATGCTTACTATGC

GCTTACTATGCGGGCCCCTT

AATGCTTACTATGCGGGCCCCTT

TAATGCTTACTATGC

AATGCTTAGCTATGCGGGC

AATGCTTACTATGCGGGCCCCTT

AATGCTTACTATGCGGGCCCCTT

CGGTCTAGATGCTTACTATGC

AATGCTTACTATGCGGGCCCCTT

CGGTCTAATGCTTAGCTATGC

ATGCTTACTATGCGGGCCCCTT

?

Subject
genome

Sequencer

Reads

Human genome: 3 gbp
A few billion short reads
(~100 GB compressed data)

Business
Data-driven decisions

Data-driven products

Source: Wikiedia (Shinjuku, Tokyo)

An organization should retain data that result from carrying
out its mission and exploit those data to generate insights
that benefit the organization, for example, market analysis,
strategic planning, decision making, etc.

Business Intelligence

In the 1990s, Wal-Mart found that customers tended to buy
diapers and beer together. So they put them next to each
other and increased sales of both.*

This is not a new idea!

So what’s changed?

More compute and storage

Ability to gather behavioral data

* BTW, this is completely apocryphal. (But it makes a nice story.)

a useful service

analyze user behavior
to extract insights

transform insights
into action

$
(hopefully)

Google. Facebook. Twitter. Amazon. Uber.

data sciencedata products

Virtuous Product Cycle

Source: https://images.lookhuman.com/render/standard/8002245806006052/pillow14in-whi-z1-t-netflixing.png

Source: https://www.reddit.com/r/teslamotors/comments/6gsc6v/i_think_the_neural_net_mining_is_just_starting/ (June 2017)

Source: Wikipedia (Rosetta Stone)

(Banko and Brill, ACL 2001)

(Brants et al., EMNLP 2007)

No data like more data!

Source: Guardian

Humans as social sensors

Computational social science

Society

Predicting X with Twitter

(Paul and Dredze, ICWSM 2011; Bond et al., Nature 2011)

Political Mobilization on Facebook

2010 US Midterm Elections:
60m users shown “I Voted” Messages

Summary: increased turnout by
60k directly and 280k indirectly

Source: https://www.theverge.com/2017/11/1/16593346/house-russia-facebook-ads

Source: https://www.propublica.org/article/facebook-enabled-advertisers-to-reach-jew-haters

Source: http://www.cnn.com/2016/12/07/asia/new-zealand-passport-robot-asian-trnd/index.html

The Perils of Big Data

The end of privacy
Who owns your data and can the government access it?

The echo chamber
Are you seeing only what you want to see?

The racist algorithm
Algorithms aren’t racist, people are?

We desperately need “data ethics” to go with big data!

Source: Popular Internet Meme

Source: Google

Tackling Big Data

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

group values by key

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3 * Important detail: reducers
process keys in sorted order

Logical View

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

worker

Master

User

Program

output

file 0

output

file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input

files

Map

phase

Intermediate files

(on local disk)

Reduce

phase

Output

files

Adapted from (Dean and Ghemawat, OSDI 2004)

Physical View

Source: Google

The datacenter is the computer!

The datacenter is the computer!

It’s all about the right level of abstraction
Moving beyond the von Neumann architecture

What’s the “instruction set” of the datacenter computer?

Hide system-level details from the developers
No more race conditions, lock contention, etc.

No need to explicitly worry about reliability, fault tolerance, etc.

Separating the what from the how
Developer specifies the computation that needs to be performed

Execution framework (“runtime”) handles actual execution

The datacenter is the computer!

Scale “out”, not “up”
Limits of SMP and large shared-memory machines

Move processing to the data
Cluster have limited bandwidth, code is a lot smaller

Process data sequentially, avoid random access
Seeks are expensive, disk throughput is good

“Big ideas”

Assume that components will break
Engineer software around hardware failures

*

*

Seek vs. Scans

Consider a 1 TB database with 100 byte records
We want to update 1 percent of the records

Scenario 2: Rewrite all records
Assume 100 MB/s throughput

Time = 5.6 hours(!)

Scenario 1: Mutate each record
Each update takes ~30 ms (seek, read, write)

108 updates = ~35 days

Source: Ted Dunning, on Hadoop mailing list

Lesson? Random access is expensive!

Source: Wikipedia (Mahout)

So you want to drive the elephant!

So you want to drive the elephant!
(Aside, what about Spark?)

org.apache.hadoop.mapreduce
org.apache.hadoop.mapred

Source: Wikipedia (Budapest)

A tale of two packages…

MapReduce API*
Mapper<Kin,Vin,Kout,Vout>

Called once at the start of the task
void setup(Mapper.Context context)

Called once for each key/value pair in the input split
void map(Kin key, Vin value, Mapper.Context context)

Called once at the end of the task
void cleanup(Mapper.Context context)

*Note that there are two versions of the API!

Reducer<Kin,Vin,Kout,Vout>/Combiner<Kin,Vin,Kout,Vout>

Called once at the start of the task
void setup(Reducer.Context context)

Called once for each key
void reduce(Kin key, Iterable<Vin> values, Reducer.Context context)

Called once at the end of the task
void cleanup(Reducer.Context context)

MapReduce API*

Partitioner<K, V>

Returns the partition number given total number of partitions
int getPartition(K key, V value, int numPartitions)

*Note that there are two versions of the API!

Job

Represents a packaged Hadoop job for submission to cluster
Need to specify input and output paths

Need to specify input and output formats
Need to specify mapper, reducer, combiner, partitioner classes

Need to specify intermediate/final key/value classes
Need to specify number of reducers (but not mappers, why?)

Don’t depend of defaults!

Writable Defines a de/serialization protocol.
Every data type in Hadoop is a Writable.

WritableComprable Defines a sort order.
All keys must be of this type (but not values).

IntWritable
LongWritable
Text
…

Concrete classes for different data types.
Note that these are container objects.

SequenceFile Binary-encoded sequence of key/value pairs.

Data Types in Hadoop: Keys and Values

“Hello World” MapReduce: Word Count

def map(key: Long, value: String) = {
for (word <- tokenize(value)) {

emit(word, 1)
}

}

def reduce(key: String, values: Iterable[Int]) = {
for (value <- values) {

sum += value
}
emit(key, sum)

}

private static final class MyMapper
extends Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable ONE = new IntWritable(1);
private final static Text WORD = new Text();

@Override
public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {
for (String word : Tokenizer.tokenize(value.toString())) {

WORD.set(word);
context.write(WORD, ONE);

}
}

}

Word Count Mapper

private static final class MyReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {

private final static IntWritable SUM = new IntWritable();

@Override
public void reduce(Text key, Iterable<IntWritable> values,

Context context) throws IOException, InterruptedException {
Iterator<IntWritable> iter = values.iterator();
int sum = 0;
while (iter.hasNext()) {

sum += iter.next().get();
}
SUM.set(sum);
context.write(key, SUM);

}
}

Word Count Reducer

Three Gotchas

Avoid object creation

Execution framework reuses value object in reducer

Passing parameters via class statics doesn’t work!

Getting Data to Mappers and Reducers

Configuration parameters
Pass in via Job configuration object

“Side data”
DistributedCache

Mappers/Reducers can read from HDFS in setup method

Complex Data Types in Hadoop

The easiest way:
Encode it as Text, e.g., (a, b) = “a:b”

Use regular expressions to parse and extract data
Works, but janky

The hard way:
Define a custom implementation of Writable(Comprable)

Must implement: readFields, write, (compareTo)
Computationally efficient, but slow for rapid prototyping
Implement WritableComparator hook for performance

How do you implement complex data types?

Somewhere in the middle:
Bespin (via lin.tl) offers various building blocks

Anatomy of a Job

Job submission:
Client (i.e., driver program) creates a job,

configures it,
and submits it to jobtracker

That’s it! The Hadoop cluster takes over…

Hadoop MapReduce program = Hadoop job
Jobs are divided into map and reduce tasks

An instance of a running task is called a task attempt
Each task occupies a slot on the tasktracker

Multiple jobs can be composed into a workflow

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

worker

Master

User

Program

output

file 0

output

file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input

files

Map

phase

Intermediate files

(on local disk)

Reduce

phase

Output

files

Adapted from (Dean and Ghemawat, OSDI 2004)

Anatomy of a Job

Behind the scenes:
Input splits are computed (on client end)

Job data (jar, configuration XML) are sent to jobtracker
Jobtracker puts job data in shared location, enqueues tasks

Tasktrackers poll for tasks
Off to the races…

InputSplit

Source: redrawn from a slide by Cloduera, cc-licensed

InputSplit InputSplit

Input File Input File

InputSplit InputSplit

RecordReader RecordReader RecordReader RecordReader RecordReader

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

In
p

u
tF

o
rm

a
t

… …

InputSplit InputSplit InputSplit

Client

Records

Mapper

RecordReader

Mapper

RecordReader

Mapper

RecordReader

Where’s the data actually coming from?

Source: redrawn from a slide by Cloduera, cc-licensed

Mapper Mapper Mapper Mapper Mapper

Partitioner Partitioner Partitioner Partitioner Partitioner

Intermediates Intermediates Intermediates Intermediates Intermediates

Reducer Reducer Reduce

Intermediates Intermediates Intermediates

(combiners omitted here)

Source: redrawn from a slide by Cloduera, cc-licensed

Reducer Reducer Reducer

Output File

RecordWriter

O
u

tp
u

tF
o

rm
a

t

Output File

RecordWriter

Output File

RecordWriter

Input and Output

InputFormat
TextInputFormat

KeyValueTextInputFormat
SequenceFileInputFormat

…

OutputFormat
TextOutputFormat

SequenceFileOutputFormat
…

Spark also uses these abstractions for reading and writing data!

Hadoop Cluster
You

Submit node
(datasci)

Getting data in?
Writing code?
Getting data out?

Hadoop Workflow

Where’s the actual
data stored?

Debugging Hadoop

First, take a deep breath
Start small, start locally

Build incrementally

Source: Wikipedia (The Scream)

Code Execution Environments

Different ways to run code:
Local (standalone) mode
Pseudo-distributed mode

Fully-distributed mode

Learn what’s good for what

Hadoop Debugging Strategies

Good ol’ System.out.println
Learn to use the webapp to access logs

Logging preferred over System.out.println
Be careful how much you log!

Fail on success
Throw RuntimeExceptions and capture state

Use Hadoop as the “glue”
Implement core functionality outside mappers and reducers

Independently test (e.g., unit testing)
Compose (tested) components in mappers and reducers

Source: Wikipedia (Japanese rock garden)

Questions?

