
Data-Intensive Distributed Computing

Part 1: MapReduce Algorithm Design (1/4)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Winter 2019)

Adam Roegiest
Kira Systems

January 8, 2019

These slides are available at http://roegiest.com/bigdata-2019w/

Agenda for Today

Who am I?
What is big data?

Why big data?
What is this course about?

Administrivia

Who am I?

PhD from Waterloo (2017)

TA for this course in its first UW offering

Research Scientist at Kira Systems (now)

Source: Wikipedia (Hard disk drive)

Big Data

Hadoop: 10K nodes, 150K
cores, 150 PB (4/2014)

Processes 20 PB a day (2008)
Crawls 20B web pages a day (2012)
Search index is 100+ PB (5/2014)
Bigtable serves 2+ EB, 600M QPS (5/2014)

300 PB data in Hive +
600 TB/day (4/2014)

400B pages,
10+ PB (2/2014)

LHC: ~15 PB a year

LSST: 6-10 PB a year
(~2020)640K ought to be

enough for
anybody.

150 PB on 50k+ servers
running 15k apps (6/2011)

S3: 2T objects, 1.1M
request/second (4/2013)

SKA: 0.3 – 1.5 EB
per year (~2020)

19 Hadoop clusters: 600
PB, 40k servers (9/2015)

How much data?

Source: Wikipedia (Everest)

Why big data? Science
Business
Society

Emergence of the 4th Paradigm

Data-intensive e-Science
Maximilien Brice, © CERN

Science

Business
Data-driven decisions

Data-driven products

Source: Wikiedia (Shinjuku, Tokyo)

Source: Guardian

Humans as social sensors

Computational social science

Society

Source: Popular Internet Meme

What is this course about?

Execution

Infrastructure

Analytics

Infrastructure

Data Science

Tools

Th
is

 C
o

u
rs

e
“big data stack”

Buzzwords

MapReduce, Spark, Flink,
Pig, Dryad, Hive, Dryad,
noSQL, Pregel, Giraph,
Storm/Heron

Execution

Infrastructure

Analytics

Infrastructure

Data Science

Tools

Th
is

 C
o

u
rs

e

Text: frequency estimation,
language models, inverted
indexes

Graphs: graph traversals,
random walks (PageRank)

Relational data: SQL, joins,
column stores

Data mining: hashing,
clustering (k-means),
classification,
recommendations

Streams: probabilistic data
structures (Bloom filters,
CMS, HLL counters)

data science, data analytics,
business intelligence, data
warehouses and data lakes

This course focuses on algorithm design and “thinking at scale”

“big data stack”

Structure of the Course

“Core” framework features and
algorithm design for batch processing

A
n

al
yz

in
g

Te
xt

A
n

al
yz

in
g

G
ra

p
h

s

A
n

al
yz

in
g

R
el

at
io

n
al

 D
at

a

D
at

a
M

in
in

g
an

d

M
ac

h
in

e
Le

ar
n

in
g

What’s beyond batch processing?

Source: Google

Tackling Big Data

“Work”

w1 w2 w3

r1 r2 r3

“Result”

worker worker worker

Partition

Aggregate

Divide and Conquer

What’s the common theme of all of these challenges?

Parallelization Challenges

How do we assign work units to workers?
What if we have more work units than workers?

What if workers need to communicate partial results?
What if workers need to access shared resources?

How do we know when a worker has finished? (Or is simply waiting?)
What if workers die?

Difficult because:

We don’t know the order in which workers run…
We don’t know when workers interrupt each other…

We don’t know when workers need to communicate partial results…
We don’t know the order in which workers access shared resources…

Common Theme?

Parallelization challenges arise from:

Need to communicate partial results
Need to access shared resources

How do we tackle these challenges?

(In other words, sharing state)

“Current” Tools

Basic primitives

Semaphores (lock, unlock)
Conditional variables (wait, notify, broadcast)

Barriers

Awareness of Common Problems

Deadlock, livelock, race conditions...
Dining philosophers, sleeping barbers, cigarette smokers...

“Current” Tools

Programming Models

Message Passing

P1 P2 P3 P4 P5

Shared Memory

P1 P2 P3 P4 P5
M

e
m

o
ry

Design Patterns

coordinator

workers

producer consumer

producer consumer

work queue

When Theory Meets Practices

Now throw in:

The scale of clusters and (multiple) datacenters
The presence of hardware failures and software bugs

The presence of multiple interacting services

The reality:

Lots of one-off solutions, custom code
Write you own dedicated library, then program with it

Burden on the programmer to explicitly manage everything

Concurrency is already difficult to reason about…

Bottom line: it’s hard!

Source: Ricardo Guimarães Herrmann

Source: CS 251

Source: CS 251

Source: Google

The datacenter is the computer!

The datacenter is the computer!

It’s all about the right level of abstraction
Moving beyond the von Neumann architecture

What’s the “instruction set” of the datacenter computer?

Hide system-level details from the developers
No more race conditions, lock contention, etc.

No need to explicitly worry about reliability, fault tolerance, etc.

Separating the what from the how
Developer specifies the computation that needs to be performed

Execution framework (“runtime”) handles actual execution

MapReduce is the first instantiation of this idea… but not the last!

Source: Google

MapReduce

What’s different?

Data-intensive vs. Compute-intensive
Focus on data-parallel abstractions

Coarse-grained vs. Fine-grained parallelism
Focus on coarse-grained data-parallel abstractions

Logical vs. Physical

Different levels of design:
“Logical” deals with abstract organizations of computing
“Physical” deals with how those abstractions are realized

Examples:
Scheduling
Operators

Data models
Network topology

Why is this important?

f f f f fMap

Roots in Functional Programming

We need something more for sharing partial results across records!

Simplest data-parallel abstraction
Process a large number of records: “do” something to each

g g g g g

f f f f fMap

Fold

Roots in Functional Programming

Let’s add in aggregation!

MapReduce = Functional programming + distributed computing!

scala> val t = Array(1, 2, 3, 4, 5)
t: Array[Int] = Array(1, 2, 3, 4, 5)

scala> t.map(n => n*n)
res0: Array[Int] = Array(1, 4, 9, 16, 25)

scala> t.map(n => n*n).foldLeft(0)((m, n) => m + n)
res1: Int = 55

Imagine parallelizing the map and fold across a cluster…

Functional Programming in Scala

A Data-Parallel Abstraction

Process a large number of records

“Do something” to each

Group intermediate results

“Aggregate” intermediate results

Write final results

Key idea: provide a functional abstraction for these two operations

MapReduce

Programmer specifies two functions:
map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

What does this actually mean?

The execution framework handles everything else…

mapmap map map

group values by key

reduce reduce reduce

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

MapReduce

The execution framework handles everything else…
What’s “everything else”?

Programmer specifies two functions:
map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

MapReduce “Runtime”

Handles scheduling
Assigns workers to map and reduce tasks

Handles “data distribution”
Moves processes to data

Handles synchronization
Groups intermediate data

Handles errors and faults
Detects worker failures and restarts

Everything happens on top of a distributed FS (later)

MapReduce

Programmer specifies two functions:
map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

The execution framework handles everything else…
Not quite…

mapmap map map

group values by key

reduce reduce reduce

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

What’s the most complex and slowest operation here?

Programmer specifies two functions:
map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

MapReduce

partition (k', p) → 0 ... p-1

Often a simple hash of the key, e.g., hash(k') mod n

Divides up key space for parallel reduce operations

combine (k2, List[v2]) → List[(k2, v2)]

Mini-reducers that run in memory after the map phase

Used as an optimization to reduce network traffic

✗

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

group values by key

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8

* Important detail: reducers
process keys in sorted order

“Hello World” MapReduce: Word Count

def map(key: Long, value: String) = {
for (word <- tokenize(value)) {

emit(word, 1)
}

}

def reduce(key: String, values: Iterable[Int]) = {
for (value <- values) {

sum += value
}
emit(key, sum)

}

MapReduce can refer to…

The programming model

The execution framework (aka “runtime”)

The specific implementation

Usage is usually clear from context!

MapReduce Implementations

Google has a proprietary implementation in C++

Bindings in Java, Python

Hadoop provides an open-source implementation in Java

Development begun by Yahoo, later an Apache project
Used in production at Facebook, Twitter, LinkedIn, Netflix, …

Large and expanding software ecosystem
Potential point of confusion: Hadoop is more than MapReduce today

Lots of custom research implementations

Source: http://www.flickr.com/photos/artmind_etcetera/6336693594/

Course Administrivia

Four in One!

Course instructors

Adam Roegiest: The guy talking right now
ISAs: Alex Weatherhead, Matt Guiol

TAs: Ryan Clancy, Peng Shi, Yao Lu, Wei (Victor) Yang

CS 451/651 431/631 all meet together

CS 451: version for CS ugrads (most students)
CS 651: version for CS grads
CS 431: version for non-CS ugrads
CS 631: version for non-CS grads

Important Coordinates

Course website:
http://roegiest.com/bigdata-2019w/

Bespin
http://bespin.io/

Communicating with us:
Piazza for general questions (link on course homepage)

uwaterloo-bigdata-2019w-staff@googlegroups.com
(Mailing list reaches all course staff – use Piazza unless it’s personal)

Lots of info there, read it!
(“I didn’t see it” will not be accepted as an excuse)

Course Design

Components of the final grade:

6 (CS 431/631) or 8 (CS 451/651) individual assignments
Final exam

Additional group final project (CS 631/651)

This course focuses on algorithm design and “thinking at scale”

Not the “mechanics” (API, command-line invocations, et.)
You’re expected to pick up MapReduce/Spark with minimal help

Expectations (CS 451)

You are:

Genuinely interested in the topic
Be prepared to put in the time

Comfortable with rapidly-evolving software

Your background:

Pre-reqs: CS 341, CS 348, CS 350
Comfortable in Java and Scala (or be ready to pick it up quickly)

Know how to use Git
Reasonable “command-line”-fu skills

Experience in compiling, patching, and installing open source software
Good debugging skills

MapReduce/Spark Environments (CS 451)

Single-Node Hadoop: Local installations
Install all software components on your own machine

Requires at least 4GB RAM and plenty of disk space
Works fine on Mac and Linux, YMMV on Windows

Important: For your convenience only!
We’ll provide basic instructions, but not technical support

Single-Node Hadoop: Linux Student CS Environment
Everything is set up for you, just follow instructions

We’ll make sure everything works

See “Software” page in course homepage for instructions

Distributed Hadoop: Datasci Cluster

Assignment Mechanics (CS 451)

Note late policy (details on course homepage)

Late by up to 24 hours: 25% reduction in grade
Late 24-48 hours: 50% reduction in grade
Late by more the 48 hours: not accepted

By assumption, we’ll pull and mark at deadline:
If you want us to hold off, you must let us know!

We’ll be using private GitHub repos for assignments

Complete your assignments, push to GitHub
We’ll pull your repos at the deadline and grade

Important: Register for (free) GitHub educational account!
https://education.github.com/discount_requests/new

Assignment Mechanics (CS 431)

Assignments will use Python and Jupyter

Assignments will generally be submitted using Marmoset

Everything you need to know is in the assignment itself

Details are on the course website for the appropriate assignment

Course Materials

One (required) textbook +
Two (optional but recommended) books +

Additional readings from other sources as appropriate

Note: 4th Edition
(optional but

recommended)

If you’re not (yet) registered:

Register for the wait list at:

Note: late registration is not an excuse for late assignments

By sending Adam an email at aroegies@uwaterloo.ca

Priority for unregistered students

CS students
Have all the pre-reqs

Final opportunity to take the course (e.g., 4B students)
Continue to attend class until final decision

Once the course is full, it is full

Yoda: You will be. You... will... be.
Luke: I won’t fail you. I’m not afraid.

Source: Wikipedia (The Scream)

Be prepared…

“Hadoop Zen”

Don’t get frustrated (take a deep breath)…
Those W$*#T@F! moments

Parts of the ecosystem are still immature
We’ve come a long way since 2007, but still far to go…

Bugs, undocumented “features”, inexplicable behavior, etc.
Different versions = major pain

Be patient…
We will inevitably encounter “situations” along the way

Be flexible…
We will have to be creative in workarounds

Be constructive…
Tell me how I can make everyone’s experience better

Source: Wikipedia (Japanese rock garden)

“Hadoop Zen”

Source: Wikipedia (Japanese rock garden)

Questions?

To Do:
1. Bookmark course homepage
2. Get on Piazza
3. Register for GitHub educational account

