Chapter 4

Inverted Indexing for Text
Retrieval

Web search is the quintessential large-data problem. Given an information
need expressed as a short query consisting of a few terms, the system’s task
is to retrieve relevant web objects (web pages, PDF documents, PowerPoint
slides, etc.) and present them to the user. How large is the web? It is difficult
to compute exactly, but even a conservative estimate would place the size at
several tens of billions of pages, totaling hundreds of terabytes (considering
text alone). In real-world applications, users demand results quickly from a
search engine—query latencies longer than a few hundred milliseconds will try
a user’s patience. Fulfilling these requirements is quite an engineering feat,
considering the amounts of data involved!

Nearly all retrieval engines for full-text search today rely on a data structure
called an inverted index, which given a term provides access to the list of
documents that contain the term. In information retrieval parlance, objects to
be retrieved are generically called “documents” even though in actuality they
may be web pages, PDFs, or even fragments of code. Given a user query, the
retrieval engine uses the inverted index to score documents that contain the
query terms with respect to some ranking model, taking into account features
such as term matches, term proximity, attributes of the terms in the document
(e.g., bold, appears in title, etc.), as well as the hyperlink structure of the
documents (e.g., PageRank [117], which we’ll discuss in Chapter 5, or related
metrics such as HITS [84] and SALSA [88]).

The web search problem decomposes into three components: gathering web
content (crawling), construction of the inverted index (indexing) and rank-
ing documents given a query (retrieval). Crawling and indexing share similar
characteristics and requirements, but these are very different from retrieval.
Gathering web content and building inverted indexes are for the most part
offline problems. Both need to be scalable and efficient, but they do not need
to operate in real time. Indexing is usually a batch process that runs peri-
odically: the frequency of refreshes and updates is usually dependent on the

65

design of the crawler. Some sites (e.g., news organizations) update their con-
tent quite frequently and need to be visited often; other sites (e.g., government
regulations) are relatively static. However, even for rapidly changing sites, it
is usually tolerable to have a delay of a few minutes until content is searchable.
Furthermore, since the amount of content that changes rapidly is relatively
small, running smaller-scale index updates at greater frequencies is usually an
adequate solution.! Retrieval, on the other hand, is an online problem that
demands sub-second response time. Individual users expect low query laten-
cies, but query throughput is equally important since a retrieval engine must
usually serve many users concurrently. Furthermore, query loads are highly
variable, depending on the time of day, and can exhibit “spikey” behavior due
to special circumstances (e.g., a breaking news event triggers a large number
of searches on the same topic). On the other hand, resource consumption for
the indexing problem is more predictable.

A comprehensive treatment of web search is beyond the scope of this chap-
ter, and even this entire book. Explicitly recognizing this, we mostly focus on
the problem of inverted indexing, the task most amenable to solutions in Map-
Reduce. This chapter begins by first providing an overview of web crawling
(Section 4.1) and introducing the basic structure of an inverted index (Sec-
tion 4.2). A baseline inverted indexing algorithm in MapReduce is presented
in Section 4.3. We point out a scalability bottleneck in that algorithm, which
leads to a revised version presented in Section 4.4. Index compression is dis-
cussed in Section 4.5, which fills in missing details on building compact index
structures. Since MapReduce is primarily designed for batch-oriented process-
ing, it does not provide an adequate solution for the retrieval problem, an issue
we discuss in Section 4.6. The chapter concludes with a summary and pointers
to additional readings.

4.1 Web Crawling

Before building inverted indexes, we must first acquire the document collection
over which these indexes are to be built. In academia and for research purposes,
this can be relatively straightforward. Standard collections for information
retrieval research are widely available for a variety of genres ranging from blogs
to newswire text. For researchers who wish to explore web-scale retrieval, there
is the ClueWeb09 collection that contains one billion web pages in ten languages
(totaling 25 terabytes) crawled by Carnegie Mellon University in early 2009.2
Obtaining access to these standard collections is usually as simple as signing
an appropriate data license from the distributor of the collection, paying a
reasonable fee, and arranging for receipt of the data.?

1Leaving aside the problem of searching live data streams such a tweets, which requires
different techniques and algorithms.

2 http://boston.lti.cs.cmu.edu/Data/clueweb09/

3As an interesting side note, in the 1990s, research collections were distributed via postal
mail on CD-ROMs, and later, on DVDs. Electronic distribution became common earlier this
decade for collections below a certain size. However, many collections today are so large that

For real-world web search, however, one cannot simply assume that the
collection is already available. Acquiring web content requires crawling, which
is the process of traversing the web by repeatedly following hyperlinks and
storing downloaded pages for subsequent processing. Conceptually, the process
is quite simple to understand: we start by populating a queue with a “seed”
list of pages. The crawler downloads pages in the queue, extracts links from
those pages to add to the queue, stores the pages for further processing, and
repeats. In fact, rudimentary web crawlers can be written in a few hundred
lines of code.

However, effective and efficient web crawling is far more complex. The
following lists a number of issues that real-world crawlers must contend with:

e A web crawler must practice good “etiquette” and not overload web
servers. For example, it is common practice to wait a fixed amount
of time before repeated requests to the same server. In order to respect
these constraints while maintaining good throughput, a crawler typically
keeps many execution threads running in parallel and maintains many
TCP connections (perhaps hundreds) open at the same time.

e Since a crawler has finite bandwidth and resources, it must prioritize
the order in which unvisited pages are downloaded. Such decisions must
be made online and in an adversarial environment, in the sense that
spammers actively create “link farms” and “spider traps” full of spam
pages to trick a crawler into overrepresenting content from a particular
site.

e Most real-world web crawlers are distributed systems that run on clusters
of machines, often geographically distributed. To avoid downloading a
page multiple times and to ensure data consistency, the crawler as a whole
needs mechanisms for coordination and load-balancing. It also needs to
be robust with respect to machine failures, network outages, and errors
of various types.

e Web content changes, but with different frequency depending on both the
site and the nature of the content. A web crawler needs to learn these
update patterns to ensure that content is reasonably current. Getting the
right recrawl frequency is tricky: too frequent means wasted resources,
but not frequent enough leads to stale content.

e The web is full of duplicate content. Examples include multiple copies of
a popular conference paper, mirrors of frequently-accessed sites such as
Wikipedia, and newswire content that is often duplicated. The problem
is compounded by the fact that most repetitious pages are not exact
duplicates but near duplicates (that is, basically the same page but with
different ads, navigation bars, etc.) It is desirable during the crawling
process to identify near duplicates and select the best exemplar to index.

the only practical method of distribution is shipping hard drives via postal mail.

e The web is multilingual. There is no guarantee that pages in one language
only link to pages in the same language. For example, a professor in
Asia may maintain her website in the local language, but contain links
to publications in English. Furthermore, many pages contain a mix of
text in different languages. Since document processing techniques (e.g.,
tokenization, stemming) differ by language, it is important to identify the
(dominant) language on a page.

The above discussion is not meant to be an exhaustive enumeration of issues,
but rather to give the reader an appreciation of the complexities involved in
this intuitively simple task. For more information, see a recent survey on web
crawling [113]. Section 4.7 provides pointers to additional readings.

4.2 Inverted Indexes

In its basic form, an inverted index consists of postings lists, one associated with
each term that appears in the collection.* The structure of an inverted index
is illustrated in Figure 4.1. A postings list is comprised of individual postings,
each of which consists of a document id and a payload—information about
occurrences of the term in the document. The simplest payload is. .. nothing!
For simple boolean retrieval, no additional information is needed in the posting
other than the document id; the existence of the posting itself indicates that
presence of the term in the document. The most common payload, however, is
term frequency (tf), or the number of times the term occurs in the document.
More complex payloads include positions of every occurrence of the term in
the document (to support phrase queries and document scoring based on term
proximity), properties of the term (such as if it occurred in the page title or
not, to support document ranking based on notions of importance), or even
the results of additional linguistic processing (for example, indicating that the
term is part of a place name, to support address searches). In the web context,
anchor text information (text associated with hyperlinks from other pages to
the page in question) is useful in enriching the representation of document
content (e.g., [107]); this information is often stored in the index as well.
In the example shown in Figure 4.1, we see that:

termy occurs in {dy,ds,ds,d11, ...},
termg occurs in {di1, da3, dsg, dsa, - . .}, and
terms occurs in {dy, d4,d11,d19, .. .}.

In an actual implementation, we assume that documents can be identified
by a unique integer ranging from 1 to n, where n is the total number of doc-
uments.® Generally, postings are sorted by document id, although other sort

4In information retrieval parlance, term is preferred over word since documents are
processed (e.g., tokenization and stemming) into basic units that are often not words in the
linguistic sense.

51t is preferable to start numbering the documents at one since it is not possible to code
zero with many common compression schemes used in information retrieval; see Section 4.5.

terms postings

term, |d, | p 2 ds|| P 2 ds|| P T2ds]| P
termy |dy|l p 2 dos| P 2| sl P 2| dasf P
terms | di || p 2 ds|| P 2 dy|| P [dig|| P

Figure 4.1: Simple illustration of an inverted index. Each term is associated
with a list of postings. Each posting is comprised of a document id and a
payload, denoted by p in this case. An inverted index provides quick access to
documents ids that contain a term.

orders are possible as well. The document ids have no inherent semantic mean-
ing, although assignment of numeric ids to documents need not be arbitrary.
For example, pages from the same domain may be consecutively numbered. Or,
alternatively, pages that are higher in quality (based, for example, on Page-
Rank values) might be assigned smaller numeric values so that they appear
toward the front of a postings list. Either way, an auxiliary data structure is
necessary to maintain the mapping from integer document ids to some other
more meaningful handle, such as a URL.

Given a query, retrieval involves fetching postings lists associated with query
terms and traversing the postings to compute the result set. In the simplest
case, boolean retrieval involves set operations (union for boolean OR and in-
tersection for boolean AND) on postings lists, which can be accomplished very
efficiently since the postings are sorted by document id. In the general case,
however, query—document scores must be computed. Partial document scores
are stored in structures called accumulators. At the end (i.e., once all postings
have been processed), the top & documents are then extracted to yield a ranked
list of results for the user. Of course, there are many optimization strategies
for query evaluation (both approximate and exact) that reduce the number of
postings a retrieval engine must examine.

The size of an inverted index varies, depending on the payload stored in each
posting. If only term frequency is stored, a well-optimized inverted index can
be a tenth of the size of the original document collection. An inverted index
that stores positional information would easily be several times larger than
one that does not. Generally, it is possible to hold the entire vocabulary (i.e.,
dictionary of all the terms) in memory, especially with techniques such as front-
coding [156]. However, with the exception of well-resourced, commercial web
search engines,® postings lists are usually too large to store in memory and must
be held on disk, usually in compressed form (more details in Section 4.5). Query

6Google keeps indexes in memory.

Algorithm 4.1 Baseline inverted indexing algorithm
Mappers emit postings keyed by terms, the execution framework groups post-
ings by term, and the reducers write postings lists to disk.

1: class MAPPER

2 procedure MAP(docid n,doc d)

3 H <+ new ASSOCIATIVEARRAY
4: for all term ¢ € doc d do
5
6
7

H{t} + H{t} +1
for all term t € H do
EMIT(term ¢, posting (n, H{t}))

1: class REDUCER

2 procedure REDUCE(term t, postings [(n1, f1), (n2, fa)...])
3: P < new LisT

4: for all posting (a, f) € postings [(n1, f1), (ne, f2)...] do
5 ApPPEND(P, (a, f))

6 SORT(P)

7 EmiIT(term ¢, postings P)

evaluation, therefore, necessarily involves random disk access and “decoding”
of the postings. One important aspect of the retrieval problem is to organize
disk operations such that random seeks are minimized.

Once again, this brief discussion glosses over many complexities and does a
huge injustice to the tremendous amount of research in information retrieval.
However, our goal is to provide the reader with an overview of the important
issues; Section 4.7 provides references to additional readings.

4.3 Inverted Indexing: Baseline Implementation

MapReduce was designed from the very beginning to produce the various data
structures involved in web search, including inverted indexes and the web
graph. We begin with the basic inverted indexing algorithm shown in Al-
gorithm 4.1.

Input to the mapper consists of document ids (keys) paired with the actual
content (values). Individual documents are processed in parallel by the map-
pers. First, each document is analyzed and broken down into its component
terms. The processing pipeline differs depending on the application and type of
document, but for web pages typically involves stripping out HTML tags and
other elements such as JavaScript code, tokenizing, case folding, removing stop-
words (common words such as ‘the’; ‘a’, ‘of’| etc.), and stemming (removing
affixes from words so that ‘dogs’ becomes ‘dog’). Once the document has been
analyzed, term frequencies are computed by iterating over all the terms and
keeping track of counts. Lines 4 and 5 in the pseudo-code reflect the process
of computing term frequencies, but hides the details of document processing.

After this histogram has been built, the mapper then iterates over all terms.
For each term, a pair consisting of the document id and the term frequency
is created. Each pair, denoted by (n, H{t}) in the pseudo-code, represents
an individual posting. The mapper then emits an intermediate key-value pair
with the term as the key and the posting as the value, in line 7 of the mapper
pseudo-code. Although as presented here only the term frequency is stored in
the posting, this algorithm can be easily augmented to store additional infor-
mation (e.g., term positions) in the payload.

In the shuffle and sort phase, the MapReduce runtime essentially performs
a large, distributed group by of the postings by term. Without any additional
effort by the programmer, the execution framework brings together all the
postings that belong in the same postings list. This tremendously simplifies
the task of the reducer, which simply needs to gather together all the postings
and write them to disk. The reducer begins by initializing an empty list and
then appends all postings associated with the same key (term) to the list.
The postings are then sorted by document id, and the entire postings list is
emitted as a value, with the term as the key. Typically, the postings list is first
compressed, but we leave this aside for now (see Section 4.4 for more details).
The final key-value pairs are written to disk and comprise the inverted index.
Since each reducer writes its output in a separate file in the distributed file
system, our final index will be split across r files, where r is the number of
reducers. There is no need to further consolidate these files. Separately, we
must also build an index to the postings lists themselves for the retrieval engine:
this is typically in the form of mappings from term to (file, byte offset) pairs,
so that given a term, the retrieval engine can fetch its postings list by opening
the appropriate file and seeking to the correct byte offset position in that file.

Execution of the complete algorithm is illustrated in Figure 4.2 with a
toy example consisting of three documents, three mappers, and two reducers.
Intermediate key-value pairs (from the mappers) and the final key-value pairs
comprising the inverted index (from the reducers) are shown in the boxes with
dotted lines. Postings are shown as pairs of boxes, with the document id on
the left and the term frequency on the right.

The MapReduce programming model provides a very concise expression of
the inverted indexing algorithm. Its implementation is similarly concise: the
basic algorithm can be implemented in as few as a couple dozen lines of code
in Hadoop (with minimal document processing). Such an implementation can
be completed as a week-long programming assignment in a course for advanced
undergraduates or first-year graduate students [83, 93]. In a non-MapReduce
indexer, a significant fraction of the code is devoted to grouping postings by
term, given constraints imposed by memory and disk (e.g., memory capacity
is limited, disk seeks are slow, etc.). In MapReduce, the programmer does not
need to worry about any of these issues—most of the heavy lifting is performed
by the execution framework.

doc 1 doc 2 doc 3
one fish, two fish red fish, blue fish one red bird

|
I
|
I
:
: one
:
|
I
|
I

| Shuffle and Sort: aggregate values by keys |

reducer reducer

Figure 4.2: Simple illustration of the baseline inverted indexing algorithm in
MapReduce with three mappers and two reducers. Postings are shown as pairs
of boxes (docid, tf).

4.4 Inverted Indexing: Revised Implementation

The inverted indexing algorithm presented in the previous section serves as a
reasonable baseline. However, there is a significant scalability bottleneck: the
algorithm assumes that there is sufficient memory to hold all postings asso-
ciated with the same term. Since the basic MapReduce execution framework
makes no guarantees about the ordering of values associated with the same
key, the reducer first buffers all postings (line 5 of the reducer pseudo-code in
Algorithm 4.1) and then performs an in-memory sort before writing the post-
ings to disk.” For efficient retrieval, postings need to be sorted by document
id. However, as collections become larger, postings lists grow longer, and at
some point in time, reducers will run out of memory.

There is a simple solution to this problem. Since the execution framework
guarantees that keys arrive at each reducer in sorted order, one way to overcome

7See similar discussion in Section 3.4: in principle, this need not be an in-memory sort.
It is entirely possible to implement a disk-based sort within the reducer.

the scalability bottleneck is to let the MapReduce runtime do the sorting for
us. Instead of emitting key-value pairs of the following type:

(term t, posting (docid, f))
We emit intermediate key-value pairs of the type instead:
(tuple (t, docid), tf f)

In other words, the key is a tuple containing the term and the document id,
while the value is the term frequency. This is exactly the value-to-key con-
version design pattern introduced in Section 3.4. With this modification, the
programming model ensures that the postings arrive in the correct order. This,
combined with the fact that reducers can hold state across multiple keys, al-
lows postings lists to be created with minimal memory usage. As a detail,
remember that we must define a custom partitioner to ensure that all tuples
with the same term are shuffled to the same reducer.

The revised MapReduce inverted indexing algorithm is shown in Algo-
rithm 4.2. The mapper remains unchanged for the most part, other than
differences in the intermediate key-value pairs. The REDUCE method is called
for each key (i.e., (t,n)), and by design, there will only be one value associated
with each key. For each key-value pair, a posting can be directly added to
the postings list. Since the postings are guaranteed to arrive in sorted order
by document id, they can be incrementally coded in compressed form—thus
ensuring a small memory footprint. Finally, when all postings associated with
the same term have been processed (i.e., t # tprey), the entire postings list is
emitted. The final postings list must be written out in the CLOSE method.
As with the baseline algorithm, payloads can be easily changed: by simply re-
placing the intermediate value f (term frequency) with whatever else is desired
(e.g., term positional information).

There is one more detail we must address when building inverted indexes.
Since almost all retrieval models take into account document length when com-
puting query—document scores, this information must also be extracted. Al-
though it is straightforward to express this computation as another MapReduce
job, this task can actually be folded into the inverted indexing process. When
processing the terms in each document, the document length is known, and can
be written out as “side data” directly to HDFS. We can take advantage of the
ability for a mapper to hold state across the processing of multiple documents
in the following manner: an in-memory associative array is created to store doc-
ument lengths, which is populated as each document is processed.® When the
mapper finishes processing input records, document lengths are written out to
HDFS (i.e., in the CLOSE method). This approach is essentially a variant of the
in-mapper combining pattern. Document length data ends up in m different
files, where m is the number of mappers; these files are then consolidated into a
more compact representation. Alternatively, document length information can

8In general, there is no worry about insufficient memory to hold these data.

Algorithm 4.2 Scalable inverted indexing
By applying the value-to-key conversion design pattern, the execution frame-
work is exploited to sort postings so that they arrive sorted by document id in
the reducer.

1: class MAPPER

2 method MaP(docid n,doc d)

3 H < new ASSOCIATIVEARRAY
4: for all term ¢ € doc d do
5
6
7

H{t} + H{t} +1
for all term ¢t € H do
Emit(tuple (t,n),tf H{t})

1: class REDUCER

2 method INITIALIZE

3 tprev — @

4: P < new PoOSTINGSLIST

5: method REDUCE((tuple (t,n),tf [f])
6 if t 7& tprev A tprev 7é w then

7 EMIT(term tp,,e,, postings P)
8

9

P.RESET()
P.Aop({n, f))
10: tprev —t
11: method CLOSE
12: EMIT(term ¢, postings P)

be emitted in special key-value pairs by the mapper. One must then write a
custom partitioner so that these special key-value pairs are shuffled to a single
reducer, which will be responsible for writing out the length data separate from
the postings lists.

4.5 Index Compression

We return to the question of how postings are actually compressed and stored
on disk. This chapter devotes a substantial amount of space to this topic be-
cause index compression is one of the main differences between a “toy” indexer
and one that works on real-world collections. Otherwise, MapReduce inverted
indexing algorithms are pretty straightforward.

Let us consider the canonical case where each posting consists of a document
id and the term frequency. A naive implementation might represent the first
as a 32-bit integer? and the second as a 16-bit integer. Thus, a postings list
might be encoded as follows:

9However, note that 232 — 1 is “only” 4,294,967,295, which is much less than even the
most conservative estimate of the size of the web.

[(5,2),(7,3),(12,1), (49,1), (51,2), ..]

where each posting is represented by a pair in parentheses. Note that all
brackets, parentheses, and commas are only included to enhance readability;
in reality the postings would be represented as a long stream of integers. This
naive implementation would require six bytes per posting. Using this scheme,
the entire inverted index would be about as large as the collection itself. For-
tunately, we can do significantly better.

The first trick is to encode differences between document ids as opposed to
the document ids themselves. Since the postings are sorted by document ids,
the differences (called d-gaps) must be positive integers greater than zero. The
above postings list, represented with d-gaps, would be:

[(5,2),(2,3),(5,1),(37,1),(2,2),...]

Of course, we must actually encode the first document id. We haven’t lost any
information, since the original document ids can be easily reconstructed from
the d-gaps. However, it’s not obvious that we’ve reduced the space require-
ments either, since the largest possible d-gap is one less than the number of
documents in the collection.

This is where the second trick comes in, which is to represent the d-gaps
in a way such that it takes less space for smaller numbers. Similarly, we want
to apply the same techniques to compress the term frequencies, since for the
most part they are also small values. But to understand how this is done,
we need to take a slight detour into compression techniques, particularly for
coding integers.

Compression, in general, can be characterized as either lossless or lossy: it’s
fairly obvious that loseless compression is required in this context. To start, it
is important to understand that all compression techniques represent a time—
space tradeoff. That is, we reduce the amount of space on disk necessary to
store data, but at the cost of extra processor cycles that must be spent coding
and decoding data. Therefore, it is possible that compression reduces size but
also slows processing. However, if the two factors are properly balanced (i.e.,
decoding speed can keep up with disk bandwidth), we can achieve the best of
both worlds: smaller and faster.

Byte-Aligned and Word-Aligned Codes

In most programming languages, an integer is encoded in four bytes and holds
a value between 0 and 232 — 1, inclusive. We limit our discussion to unsigned
integers, since d-gaps are always positive (and greater than zero). This means
that 1 and 4,294,967,295 both occupy four bytes. Obviously, encoding d-gaps
this way doesn’t yield any reductions in size.

A simple approach to compression is to only use as many bytes as is neces-
sary to represent the integer. This is known as variable-length integer coding
(varInt for short) and accomplished by using the high order bit of every byte

as the continuation bit, which is set to one in the last byte and zero else-
where. As a result, we have 7 bits per byte for coding the value, which means
that 0 < n < 27 can be expressed with 1 byte, 27 < n < 2 with 2 bytes,
21 < n < 221 with 3, and 22! < n < 22® with 4 bytes. This scheme can be
extended to code arbitrarily-large integers (i.e., beyond 4 bytes). As a concrete
example, the two numbers:

127, 128
would be coded as such:
11111111, 0 0000001 1 0000000

The above code contains two code words, the first consisting of 1 byte, and
the second consisting of 2 bytes. Of course, the comma and the spaces are
there only for readability. Variable-length integers are byte-aligned because
the code words always fall along byte boundaries. As a result, there is never
any ambiguity about where one code word ends and the next begins. However,
the downside of varInt coding is that decoding involves lots of bit operations
(masks, shifts). Furthermore, the continuation bit sometimes results in fre-
quent branch mispredicts (depending on the actual distribution of d-gaps),
which slows down processing.

A variant of the varInt scheme was described by Jeff Dean in a keynote talk
at the WSDM 2009 conference.!? The insight is to code groups of four integers
at a time. Each group begins with a prefix byte, divided into four 2-bit values
that specify the byte length of each of the following integers. For example, the
following prefix byte:

00,00,01,10

indicates that the following four integers are one byte, one byte, two bytes, and
three bytes, respectively. Therefore, each group of four integers would consume
anywhere between 5 and 17 bytes. A simple lookup table based on the prefix
byte directs the decoder on how to process subsequent bytes to recover the
coded integers. The advantage of this group varlnt coding scheme is that
values can be decoded with fewer branch mispredicts and bitwise operations.
Experiments reported by Dean suggest that decoding integers with this scheme
is more than twice as fast as the basic varInt scheme.

In most architectures, accessing entire machine words is more efficient than
fetching all its bytes separately. Therefore, it makes sense to store postings
in increments of 16-bit, 32-bit, or 64-bit machine words. Anh and Moffat [8]
presented several word-aligned coding methods, one of which is called Simple-
9, based on 32-bit words. In this coding scheme, four bits in each 32-bit word
are reserved as a selector. The remaining 28 bits are used to code actual
integer values. Now, there are a variety of ways these 28 bits can be divided

10 nttp://research.google.com/people/jeff/WSDMO9-keynote . pdf

to code one or more integers: 28 bits can be used to code one 28-bit integer,
two 14-bit integers, three 9-bit integers (with one bit unused), etc., all the
way up to twenty-eight 1-bit integers. In fact, there are nine different ways
the 28 bits can be divided into equal parts (hence the name of the technique),
some with leftover unused bits. This is stored in the selector bits. Therefore,
decoding involves reading a 32-bit word, examining the selector to see how the
remaining 28 bits are packed, and then appropriately decoding each integer.
Coding works in the opposite way: the algorithm scans ahead to see how many
integers can be squeezed into 28 bits, packs those integers, and sets the selector
bits appropriately.

Bit-Aligned Codes

The advantage of byte-aligned and word-aligned codes is that they can be
coded and decoded quickly. The downside, however, is that they must consume
multiples of eight bits, even when fewer bits might suffice (the Simple-9 scheme
gets around this by packing multiple integers into a 32-bit word, but even then,
bits are often wasted). In bit-aligned codes, on the other hand, code words can
occupy any number of bits, meaning that boundaries can fall anywhere. In
practice, coding and decoding bit-aligned codes require processing bytes and
appropriately shifting or masking bits (usually more involved than varlnt and
group varlnt coding).

One additional challenge with bit-aligned codes is that we need a mechanism
to delimit code words, i.e., tell where the last ends and the next begins, since
there are no byte boundaries to guide us. To address this issue, most bit-aligned
codes are so-called prefix codes (confusingly, they are also called prefix-free
codes), in which no valid code word is a prefix of any other valid code word.
For example, coding 0 < < 3 with {0,1,01} is not a valid prefix code, since
0 is a prefix of 01, and so we can’t tell if 01 is two code words or one. On the
other hand, {00,01, 1} is a valid prefix code, such that a sequence of bits:

0001101001010100
can be unambiguously segmented into:
0001 101001010100

and decoded without any additional delimiters.

One of the simplest prefix codes is the unary code. An integer x > 0 is
coded as x — 1 one bits followed by a zero bit. Note that unary codes do not
allow the representation of zero, which is fine since d-gaps and term frequencies
should never be zero.!' As an example, 4 in unary code is 1110. With unary
code we can code z in x bits, which although economical for small values,
becomes inefficient for even moderately large values. Unary codes are rarely

1 As a note, some sources describe slightly different formulations of the same coding
scheme. Here, we adopt the conventions used in the classic IR text Managing Gigabytes [156].

Golomb

T unary vy b=5 b=10
1 0 0 0:00 0:000
2 10 10:0 0:01 0:001
3 110 10:1 0:10 0:010
4 1110 110:00 0:110 0:011
5 11110 110:01 0:111 0:100
6 111110 110:10 10:00 0:101
7 1111110 110:11 10:01 0:1100
8§ 11111110 1110:000 10:10 0:1101
9 111111110 1110:001 10:110 0:1110
10 1111111110 1110:010 10:111 0:1111

Figure 4.3: The first ten positive integers in unary, v, and Golomb (b = 5, 10)
codes.

used by themselves, but form a component of other coding schemes. Unary
codes of the first ten positive integers are shown in Figure 4.3.

Elias v code is an efficient coding scheme that is widely used in practice.
An integer « > 0 is broken into two components, 1+ [log, 2| (= n, the length),
which is coded in unary code, and x — 2U°82%] (= 7, the remainder), which
is in binary.'> The unary component n specifies the number of bits required
to code x, and the binary component codes the remainder r in n — 1 bits. As
an example, consider x = 10: 1 + |log, 10| = 4, which is 1110. The binary
component codes z — 2% = 2 in 4 — 1 = 3 bits, which is 010. Putting both
together, we arrive at 1110:010. The extra colon is inserted only for readability;
it’s not part of the final code, of course.

Working in reverse, it is easy to unambiguously decode a bit stream of
codes: First, we read a unary code c¢,, which is a prefix code. This tells us
that the binary portion is written in ¢, — 1 bits, which we then read as ¢;. We
can then reconstruct as 2°«~! 4 ¢,. For < 16, v codes occupy less than a
full byte, which makes them more compact than variable-length integer codes.
Since term frequencies for the most part are relatively small, v codes make
sense for them and can yield substantial space savings. For reference, the ~
codes of the first ten positive integers are shown in Figure 4.3. A variation on
v code is 0 code, where the n portion of the v code is coded in v code itself (as
opposed to unary code). For smaller values v codes are more compact, but for
larger values, § codes take less space.

Unary and 7 codes are parameterless, but even better compression can
be achieved with parameterized codes. A good example of this is Golomb
code. For some parameter b, an integer x > 0 is coded in two parts: first, we
compute ¢ = | (z —1)/b] and code ¢+ 1 in unary; then, we code the remainder

12Note that || is the floor function, which maps 2 to the largest integer not greater than
z, so, e.g., |3.8] = 3. This is the default behavior in many programming languages when
casting from a floating-point type to an integer type.

r = x — gb — 1 in truncated binary. This is accomplished as follows: if b is
a power of two, then truncated binary is exactly the same as normal binary,
requiring log, b bits. Otherwise, we code the first 211°22 2141 _ b values of r in
|log, b bits and code the rest of the values of r by coding r + 2lleg20l+1 _p
in ordinary binary representation using |log,b| + 1 bits. In this case, the
r is coded in either |log,b| or |log, b] + 1 bits, and unlike ordinary binary
coding, truncated binary codes are prefix codes. As an example, if b =5, then
r can take the values {0,1,2,3,4}, which would be coded with the following
code words: {00,01,10,110,111}. For reference, Golomb codes of the first ten
positive integers are shown in Figure 4.3 for b = 5 and b = 10. A special
case of Golomb code is worth noting: if b is a power of two, then coding and
decoding can be handled more efficiently (needing only bit shifts and bit masks,
as opposed to multiplication and division). These are known as Rice codes.

Researchers have shown that Golomb compression works well for d-gaps,
and is optimal with the following parameter setting:

df
b~ 0.60 % (4.1)

where df is the document frequency of the term, and N is the number of
documents in the collection.'?

Putting everything together, one popular approach for postings compres-
sion is to represent d-gaps with Golomb codes and term frequencies with ~y

codes [156, 162]. If positional information is desired, we can use the same trick
to code differences between term positions using v codes.

Postings Compression

Having completed our slight detour into integer compression techniques, we can
now return to the scalable inverted indexing algorithm shown in Algorithm 4.2
and discuss how postings lists can be properly compressed. As we can see from
the previous section, there is a wide range of choices that represent different
tradeoffs between compression ratio and decoding speed. Actual performance
also depends on characteristics of the collection, which, among other factors,
determine the distribution of d-gaps. Biittcher et al. [30] recently compared
the performance of various compression techniques on coding document ids. In
terms of the amount of compression that can be obtained (measured in bits
per docid), Golomb and Rice codes performed the best, followed by ~ codes,
Simple-9, varInt, and group varlnt (the least space efficient). In terms of raw
decoding speed, the order was almost the reverse: group varlnt was the fastest,
followed by varInt.'* Simple-9 was substantially slower, and the bit-aligned

BFor details as to why this is the case, we refer the reader elsewhere [156], but here’s
the intuition: under reasonable assumptions, the appearance of postings can be modeled as
a sequence of independent Bernoulli trials, which implies a certain distribution of d-gaps.
From this we can derive an optimal setting of b.

4 However, this study found less speed difference between group varInt and basic varInt
than Dean’s analysis, presumably due to the different distribution of d-gaps in the collections
they were examining.

codes were even slower than that. Within the bit-aligned codes, Rice codes
were the fastest, followed by 7, with Golomb codes being the slowest (about
ten times slower than group varlnt).

Let us discuss what modifications are necessary to our inverted indexing
algorithm if we were to adopt Golomb compression for d-gaps and represent
term frequencies with v codes. Note that this represents a space-efficient en-
coding, at the cost of slower decoding compared to alternatives. Whether or
not this is actually a worthwhile tradeoff in practice is not important here: use
of Golomb codes serves a pedagogical purpose, to illustrate how one might set
compression parameters.

Coding term frequencies with v codes is easy since they are parameterless.
Compressing d-gaps with Golomb codes, however, is a bit tricky, since two
parameters are required: the size of the document collection and the number of
postings for a particular postings list (i.e., the document frequency, or df). The
first is easy to obtain and can be passed into the reducer as a constant. The df
of a term, however, is not known until all the postings have been processed—
and unfortunately, the parameter must be known before any posting is coded.
At first glance, this seems like a chicken-and-egg problem. A two-pass solution
that involves first buffering the postings (in memory) would suffer from the
memory bottleneck we’ve been trying to avoid in the first place.

To get around this problem, we need to somehow inform the reducer of
a term’s df before any of its postings arrive. This can be solved with the
order inversion design pattern introduced in Section 3.3 to compute relative
frequencies. The solution is to have the mapper emit special keys of the form
(t, %) to communicate partial document frequencies. That is, inside the mapper,
in addition to emitting intermediate key-value pairs of the following form:

(tuple (¢, docid), tf f)
we also emit special intermediate key-value pairs like this:
(tuple (t,*),df e)

to keep track of document frequencies associated with each term. In practice,
we can accomplish this by applying the in-mapper combining design pattern
(see Section 3.1). The mapper holds an in-memory associative array that keeps
track of how many documents a term has been observed in (i.e., the local
document frequency of the term for the subset of documents processed by the
mapper). Once the mapper has processed all input records, special keys of the
form (t,*) are emitted with the partial df as the value.

To ensure that these special keys arrive first, we define the sort order of the
tuple so that the special symbol * precedes all documents (part of the order
inversion design pattern). Thus, for each term, the reducer will first encounter
the (¢,) key, associated with a list of values representing partial df values
originating from each mapper. Summing all these partial contributions will
yield the term’s df, which can then be used to set the Golomb compression

parameter b. This allows the postings to be incrementally compressed as they
are encountered in the reducer—memory bottlenecks are eliminated since we
do not need to buffer postings in memory.

Once again, the order inversion design pattern comes to the rescue. Recall
that the pattern is useful when a reducer needs to access the result of a com-
putation (e.g., an aggregate statistic) before it encounters the data necessary
to produce that computation. For computing relative frequencies, that bit of
information was the marginal. In this case, it’s the document frequency.

4.6 What About Retrieval?

Thus far, we have briefly discussed web crawling and focused mostly on Map-
Reduce algorithms for inverted indexing. What about retrieval? It should be
fairly obvious that MapReduce, which was designed for large batch operations,
is a poor solution for retrieval. Since users demand sub-second response times,
every aspect of retrieval must be optimized for low latency, which is exactly the
opposite tradeoff made in MapReduce. Recall the basic retrieval problem: we
must look up postings lists corresponding to query terms, systematically tra-
verse those postings lists to compute query—document scores, and then return
the top k results to the user. Looking up postings implies random disk seeks,
since for the most part postings are too large to fit into memory (leaving aside
caching and other special cases for now). Unfortunately, random access is not
a forte of the distributed file system underlying MapReduce—such operations
require multiple round-trip network exchanges (and associated latencies). In
HDFS, a client must first obtain the location of the desired data block from
the namenode before the appropriate datanode can be contacted for the ac-
tual data. Of course, access will typically require a random disk seek on the
datanode itself.

It should be fairly obvious that serving the search needs of a large number
of users, each of whom demand sub-second response times, is beyond the capa-
bilities of any single machine. The only solution is to distribute retrieval across
a large number of machines, which necessitates breaking up the index in some
manner. There are two main partitioning strategies for distributed retrieval:
document partitioning and term partitioning. Under document partitioning,
the entire collection is broken up into multiple smaller sub-collections, each of
which is assigned to a server. In other words, each server holds the complete
index for a subset of the entire collection. This corresponds to partitioning ver-
tically in Figure 4.4. With term partitioning, on the other hand, each server is
responsible for a subset of the terms for the entire collection. That is, a server
holds the postings for all documents in the collection for a subset of terms.
This corresponds to partitioning horizontally in Figure 4.4.

Document and term partitioning require different retrieval strategies and
represent different tradeoffs. Retrieval under document partitioning involves a
query broker, which forwards the user’s query to all partition servers, merges
partial results from each, and then returns the final results to the user. With

t 2 3
t, 1 1 4 partition,
t; | 1 1 2
t 5 2 2
ts 1 1 3 partition,
s | 2 1
t; 2 1 4
tg 1 2 3 partition,
ty 1 2 1

partition,; partition, partition,

Figure 4.4: Term—document matrix for a toy collection (nine documents,
nine terms) illustrating different partitioning strategies: partitioning vertically
(1,2,3) corresponds to document partitioning, whereas partitioning horizon-
tally (a, b, c) corresponds to term partitioning.

this architecture, searching the entire collection requires that the query be
processed by every partition server. However, since each partition operates
independently and traverses postings in parallel, document partitioning typi-
cally yields shorter query latencies (compared to a single monolithic index with
much longer postings lists).

Retrieval under term partitioning, on the other hand, requires a very differ-
ent strategy. Suppose the user’s query @) contains three terms, g1, g2, and gs.
Under the pipelined query evaluation strategy, the broker begins by forwarding
the query to the server that holds the postings for ¢; (usually the least frequent
term). The server traverses the appropriate postings list and computes partial
query—document scores, stored in the accumulators. The accumulators are then
passed to the server that holds the postings associated with ¢ for additional
processing, and then to the server for g3, before final results are passed back to
the broker and returned to the user. Although this query evaluation strategy
may not substantially reduce the latency of any particular query, it can theo-
retically increase a system’s throughput due to the far smaller number of total
disk seeks required for each user query (compared to document partitioning).

However, load-balancing is tricky in a pipelined term-partitioned architecture
due to skew in the distribution of query terms, which can create “hot spots”
on servers that hold the postings for frequently-occurring query terms.

In general, studies have shown that document partitioning is a better strat-
egy overall [109], and this is the strategy adopted by Google [16]. Furthermore,
it is known that Google maintains its indexes in memory (although this is cer-
tainly not the common case for search engines in general). One key advantage
of document partitioning is that result quality degrades gracefully with machine
failures. Partition servers that are offline will simply fail to deliver results for
their subsets of the collection. With sufficient partitions, users might not even
be aware that documents are missing. For most queries, the web contains
more relevant documents than any user has time to digest: users of course care
about getting relevant documents (sometimes, they are happy with a single
relevant document), but they are generally less discriminating when it comes
to which relevant documents appear in their results (out of the set of all rele-
vant documents). Note that partitions may be unavailable due to reasons other
than machine failure: cycling through different partitions is a very simple and
non-disruptive strategy for index updates.

Working in a document-partitioned architecture, there are a variety of ap-
proaches to dividing up the web into smaller pieces. Proper partitioning of the
collection can address one major weakness of this architecture, which is that
every partition server is involved in every user query. Along one dimension,
it is desirable to partition by document quality using one or more classifiers;
see [124] for a recent survey on web page classification. Partitioning by doc-
ument quality supports a multi-phase search strategy: the system examines
partitions containing high quality documents first, and only backs off to parti-
tions containing lower quality documents if necessary. This reduces the number
of servers that need to be contacted for a user query. Along an orthogonal di-
mension, it is desirable to partition documents by content (perhaps also guided
by the distribution of user queries from logs), so that each partition is “well
separated” from the others in terms of topical coverage. This also reduces the
number of machines that need to be involved in serving a user’s query: the bro-
ker can direct queries only to the partitions that are likely to contain relevant
documents, as opposed to forwarding the user query to all the partitions.

On a large-scale, reliability of service is provided by replication, both in
terms of multiple machines serving the same partition within a single data-
center, but also replication across geographically-distributed datacenters. This
creates at least two query routing problems: since it makes sense to serve clients
from the closest datacenter, a service must route queries to the appropriate lo-
cation. Within a single datacenter, the system needs to properly balance load
across replicas.

There are two final components of real-world search engines that are worth
discussing. First, recall that postings only store document ids. Therefore, raw
retrieval results consist of a ranked list of semantically meaningless document
ids. It is typically the responsibility of document servers, functionally distinct
from the partition servers holding the indexes, to generate meaningful output

for user presentation. Abstractly, a document server takes as input a query and
a document id, and computes an appropriate result entry, typically comprising
the title and URL of the page, a snippet of the source document showing the
user’s query terms in context, and additional metadata about the document.
Second, query evaluation can benefit immensely from caching, of individual
postings (assuming that the index is not already in memory) and even results
of entire queries [13]. This is made possible by the Zipfian distribution of
queries, with very frequent queries at the head of the distribution dominating
the total number of queries. Search engines take advantage of this with cache
servers, which are functionally distinct from all of the components discussed
above.

4.7 Summary and Additional Readings

Web search is a complex problem that breaks down into three conceptually-
distinct components. First, the documents collection must be gathered (by
crawling the web). Next, inverted indexes and other auxiliary data structures
must be built from the documents. Both of these can be considered offline
problems. Finally, index structures must be accessed and processed in response
to user queries to generate search results. This last task is an online problem
that demands both low latency and high throughput.

This chapter primarily focused on building inverted indexes, the problem
most suitable for MapReduce. After all, inverted indexing is nothing but a
very large distributed sort and group by operation! We began with a base-
line implementation of an inverted indexing algorithm, but quickly noticed a
scalability bottleneck that stemmed from having to buffer postings in mem-
ory. Application of the value-to-key conversion design pattern (Section 3.4)
addressed the issue by offloading the task of sorting postings by document id
to the MapReduce execution framework. We also surveyed various techniques
for integer compression, which yield postings lists that are both more compact
and faster to process. As a specific example, one could use Golomb codes for
compressing d-gaps and v codes for term frequencies. We showed how the
order inversion design pattern introduced in Section 3.3 for computing relative
frequencies can be used to properly set compression parameters.

Additional Readings. Our brief discussion of web search glosses over many
complexities and does a huge injustice to the tremendous amount of research
in information retrieval. Here, however, we provide a few entry points into the
literature. A survey article by Zobel and Moffat [162] is an excellent starting
point on indexing and retrieval algorithms. Another by Baeza-Yates et al. [11]
overviews many important issues in distributed retrieval. A keynote talk at
the WSDM 2009 conference by Jeff Dean revealed a lot of information about
the evolution of the Google search architecture.!® Finally, a number of general
information retrieval textbooks have been recently published [101, 42, 30]. Of

15 nttp://research.google.com/people/jeff/WSDMO9-keynote . pdf

these three, the one by Biittcher et al. [30] is noteworthy in having detailed ex-
perimental evaluations that compare the performance (both effectiveness and
efficiency) of a wide range of algorithms and techniques. While outdated in
many other respects, the textbook Managing Gigabytes [156] remains an ex-
cellent source for index compression techniques. Finally, ACM SIGIR is an
annual conference and the most prestigious venue for academic information
retrieval research; proceedings from those events are perhaps the best starting
point for those wishing to keep abreast of publicly-documented developments
in the field.

