
Chapter 3

Basic MapReduce Algorithm
Design

This is a post-production manuscript of: Jimmy Lin and Chris Dyer. Data-Intensive

Text Processing with MapReduce. Morgan & Claypool Publishers, 2010. This ver-

sion was compiled on December 25, 2017.

A large part of the power of MapReduce comes from its simplicity: in addition
to preparing the input data, the programmer needs only to implement the map-
per, the reducer, and optionally, the combiner and the partitioner. All other
aspects of execution are handled transparently by the execution framework—
on clusters ranging from a single node to a few thousand nodes, over datasets
ranging from gigabytes to petabytes. However, this also means that any con-
ceivable algorithm that a programmer wishes to develop must be expressed
in terms of a small number of rigidly-defined components that must fit to-
gether in very specific ways. It may not appear obvious how a multitude of
algorithms can be recast into this programming model. The purpose of this
chapter is to provide, primarily through examples, a guide to MapReduce al-
gorithm design. These examples illustrate what can be thought of as “design
patterns” for MapReduce, which instantiate arrangements of components and
specific techniques designed to handle frequently-encountered situations across
a variety of problem domains. Two of these design patterns are used in the
scalable inverted indexing algorithm we’ll present later in Chapter 4; concepts
presented here will show up again in Chapter 5 (graph processing) and Chap-
ter 7 (expectation-maximization algorithms).

Synchronization is perhaps the most tricky aspect of designing MapReduce
algorithms (or for that matter, parallel and distributed algorithms in general).
Other than embarrassingly-parallel problems, processes running on separate
nodes in a cluster must, at some point in time, come together—for example,
to distribute partial results from nodes that produced them to the nodes that
will consume them. Within a single MapReduce job, there is only one opportu-
nity for cluster-wide synchronization—during the shuffle and sort stage where

intermediate key-value pairs are copied from the mappers to the reducers and
grouped by key. Beyond that, mappers and reducers run in isolation without
any mechanisms for direct communication. Furthermore, the programmer has
little control over many aspects of execution, for example:

• Where a mapper or reducer runs (i.e., on which node in the cluster).

• When a mapper or reducer begins or finishes.

• Which input key-value pairs are processed by a specific mapper.

• Which intermediate key-value pairs are processed by a specific reducer.

Nevertheless, the programmer does have a number of techniques for controlling
execution and managing the flow of data in MapReduce. In summary, they are:

1. The ability to construct complex data structures as keys and values to
store and communicate partial results.

2. The ability to execute user-specified initialization code at the beginning of
a map or reduce task, and the ability to execute user-specified termination
code at the end of a map or reduce task.

3. The ability to preserve state in both mappers and reducers across multiple
input or intermediate keys.

4. The ability to control the sort order of intermediate keys, and therefore
the order in which a reducer will encounter particular keys.

5. The ability to control the partitioning of the key space, and therefore the
set of keys that will be encountered by a particular reducer.

It is important to realize that many algorithms cannot be easily expressed as
a single MapReduce job. One must often decompose complex algorithms into
a sequence of jobs, which requires orchestrating data so that the output of one
job becomes the input to the next. Many algorithms are iterative in nature, re-
quiring repeated execution until some convergence criteria—graph algorithms
in Chapter 5 and expectation-maximization algorithms in Chapter 7 behave
in exactly this way. Often, the convergence check itself cannot be easily ex-
pressed in MapReduce. The standard solution is an external (non-MapReduce)
program that serves as a “driver” to coordinate MapReduce iterations.

This chapter explains how various techniques to control code execution and
data flow can be applied to design algorithms in MapReduce. The focus is both
on scalability—ensuring that there are no inherent bottlenecks as algorithms
are applied to increasingly larger datasets—and efficiency—ensuring that algo-
rithms do not needlessly consume resources and thereby reducing the cost of
parallelization. The gold standard, of course, is linear scalability: an algorithm
running on twice the amount of data should take only twice as long. Similarly,

an algorithm running on twice the number of nodes should only take half as
long.

The chapter is organized as follows:

• Section 3.1 introduces the important concept of local aggregation in Map-
Reduce and strategies for designing efficient algorithms that minimize the
amount of partial results that need to be copied across the network. The
proper use of combiners is discussed in detail, as well as the “in-mapper
combining” design pattern.

• Section 3.2 uses the example of building word co-occurrence matrices on
large text corpora to illustrate two common design patterns, which we
dub “pairs” and “stripes”. These two approaches are useful in a large
class of problems that require keeping track of joint events across a large
number of observations.

• Section 3.3 shows how co-occurrence counts can be converted into relative
frequencies using a pattern known as “order inversion”. The sequencing
of computations in the reducer can be recast as a sorting problem, where
pieces of intermediate data are sorted into exactly the order that is re-
quired to carry out a series of computations. Often, a reducer needs to
compute an aggregate statistic on a set of elements before individual el-
ements can be processed. Normally, this would require two passes over
the data, but with the “order inversion” design pattern, the aggregate
statistic can be computed in the reducer before the individual elements
are encountered. This may seem counter-intuitive: how can we compute
an aggregate statistic on a set of elements before encountering elements of
that set? As it turns out, clever sorting of special key-value pairs enables
exactly this.

• Section 3.4 provides a general solution to secondary sorting, which is the
problem of sorting values associated with a key in the reduce phase. We
call this technique “value-to-key conversion”.

3.1 Local Aggregation

In the context of data-intensive distributed processing, the single most impor-
tant aspect of synchronization is the exchange of intermediate results, from the
processes that produced them to the processes that will ultimately consume
them. In a cluster environment, with the exception of embarrassingly-parallel
problems, this necessarily involves transferring data over the network. Further-
more, in Hadoop, intermediate results are written to local disk before being
sent over the network. Since network and disk latencies are relatively expen-
sive compared to other operations, reductions in the amount of intermediate
data translate into increases in algorithmic efficiency. In MapReduce, local
aggregation of intermediate results is one of the keys to efficient algorithms.
Through use of the combiner and by taking advantage of the ability to preserve

Algorithm 3.1 Word count (repeated from Algorithm 2.1)

The mapper emits an intermediate key-value pair for each word in an input
document. The reducer sums up all counts for each word.

1 class Mapper {

2 def map(key: Long, value: Text) = {

3 for (word <- tokenize(value)) {

4 emit(word, 1)

5 }

6 }

7

8 class Reducer {

9 def reduce(key: Text, values: Iterable[Int]) = {

10 for (value <- values) {

11 sum += value

12 }

13 emit(key, sum)

14 }

15 }

state across multiple inputs, it is often possible to substantially reduce both the
number and size of key-value pairs that need to be shuffled from the mappers
to the reducers.

Combiners and In-Mapper Combining

We illustrate various techniques for local aggregation using the simple word
count example presented in Section 2.2. For convenience, Algorithm 3.1 repeats
the pseudo-code of the basic algorithm, which is quite simple: the mapper emits
an intermediate key-value pair for each term observed, with the term itself as
the key and a value of one; reducers sum up the partial counts to arrive at the
final count.

The first technique for local aggregation is the combiner, already discussed
in Section 2.4. Combiners provide a general mechanism within the Map-
Reduce framework to reduce the amount of intermediate data generated by
the mappers—recall that they can be understood as “mini-reducers” that pro-
cess the output of mappers. In this example, the combiners aggregate term
counts across the documents processed by each map task. This results in a re-
duction in the number of intermediate key-value pairs that need to be shuffled
across the network—from the order of total number of terms in the collection
to the order of the number of unique terms in the collection.1

1More precisely, if the combiners take advantage of all opportunities for local aggregation,
the algorithm would generate at most m × V intermediate key-value pairs, where m is the
number of mappers and V is the vocabulary size (number of unique terms in the collection),
since every term could have been observed in every mapper. However, there are two additional
factors to consider. Due to the Zipfian nature of term distributions, most terms will not be
observed by most mappers (for example, terms that occur only once will by definition only be

Algorithm 3.2 Word count mapper using associative arrays

The mapper builds a histogram of all words in each input document before
emitting key-value pairs for unique words observed.

1 class Mapper {

2 def map(key: Long, value: Text) = {

3 val counts = new Map()

4 for (word <- tokenize(value)) {

5 counts(word) += 1

6 }

7 for ((k, v) <- counts) {

8 emit(k, v)

9 }

10 }

11 }

An improvement on the basic algorithm is shown in Algorithm 3.2 (the
mapper is modified but the reducer remains the same as in Algorithm 3.1 and
therefore is not repeated). An associative array (i.e., Map in Java) is introduced
inside the mapper to tally up term counts within a single document: instead of
emitting a key-value pair for each term in the document, this version emits a
key-value pair for each unique term in the document. Given that some words
appear frequently within a document (for example, a document about dogs is
likely to have many occurrences of the word “dog”), this can yield substantial
savings in the number of intermediate key-value pairs emitted, especially for
long documents.

This basic idea can be taken one step further, as illustrated in the variant
of the word count algorithm in Algorithm 3.3 (once again, only the mapper is
modified). The workings of this algorithm critically depends on the details of
how map and reduce tasks in Hadoop are executed, discussed in Section 2.6.
Recall, a (Java) mapper object is created for each map task, which is responsible
for processing a block of input key-value pairs. Prior to processing any input
key-value pairs, the mapper’s setup method is called, which is an API hook for
user-specified code. In this case, we initialize an associative array for holding
term counts. Since it is possible to preserve state across multiple calls of the
map method (for each input key-value pair), we can continue to accumulate
partial term counts in the associative array across multiple documents, and
emit key-value pairs only when the mapper has processed all documents. That
is, emission of intermediate data is deferred until the cleanup method in the
pseudo-code. Recall that this API hook provides an opportunity to execute
user-specified code after the map method has been applied to all input key-
value pairs of the input data split to which the map task was assigned.

With this technique, we are in essence incorporating combiner functionality

observed by one mapper). On the other hand, combiners in Hadoop are treated as optional
optimizations, so there is no guarantee that the execution framework will take advantage of
all opportunities for partial aggregation.

Algorithm 3.3 Word count mapper using the“in-mapper combining”

The mapper builds a histogram of all input documents processed before emit-
ting key-value pairs for unique words observed.

1 class Mapper {

2 val counts = new Map()

3

4 def map(key: Long, value: Text) = {

5 for (word <- tokenize(value)) {

6 counts(word) += 1

7 }

8 }

9

10 def cleanup() = {

11 for ((k, v) <- counts) {

12 emit(k, v)

13 }

14 }

15 }

directly inside the mapper. There is no need to run a separate combiner,
since all opportunities for local aggregation are already exploited.2 This is
a sufficiently common design pattern in MapReduce that it’s worth giving it
a name, “in-mapper combining”, so that we can refer to the pattern more
conveniently throughout the book. We’ll see later on how this pattern can be
applied to a variety of problems. There are two main advantages to using this
design pattern:

First, it provides control over when local aggregation occurs and how it
exactly takes place. In contrast, the semantics of the combiner is underspecified
in MapReduce. For example, Hadoop makes no guarantees on how many times
the combiner is applied, or that it is even applied at all. The combiner is
provided as a semantics-preserving optimization to the execution framework,
which has the option of using it, perhaps multiple times, or not at all (or even
in the reduce phase). In some cases (although not in this particular example),
such indeterminism is unacceptable, which is exactly why programmers often
choose to perform their own local aggregation in the mappers.

Second, in-mapper combining will typically be more efficient than using
actual combiners. One reason for this is the additional overhead associated
with actually materializing the key-value pairs. Combiners reduce the amount
of intermediate data that is shuffled across the network, but don’t actually
reduce the number of key-value pairs that are emitted by the mappers in the
first place. With the algorithm in Algorithm 3.2, intermediate key-value pairs
are still generated on a per-document basis, only to be “compacted” by the

2Leaving aside the minor complication that in Hadoop, combiners can be run in the
reduce phase also (when merging intermediate key-value pairs from different map tasks).
However, in practice it makes almost no difference either way.

combiners. This process involves unnecessary object creation and destruction
(garbage collection takes time), and furthermore, object serialization and dese-
rialization (when intermediate key-value pairs fill the in-memory buffer holding
map outputs and need to be temporarily spilled to disk). In contrast, with in-
mapper combining, the mappers will generate only those key-value pairs that
need to be shuffled across the network to the reducers.

There are, however, drawbacks to the in-mapper combining pattern. First,
it breaks the functional programming underpinnings of MapReduce, since state
is being preserved across multiple input key-value pairs. Ultimately, this isn’t
a big deal, since pragmatic concerns for efficiency often trump theoretical “pu-
rity”, but there are practical consequences as well. Preserving state across
multiple input instances means that algorithmic behavior may depend on the
order in which input key-value pairs are encountered. This creates the poten-
tial for ordering-dependent bugs, which are difficult to debug on large datasets
in the general case (although the correctness of in-mapper combining for word
count is easy to demonstrate). Second, there is a fundamental scalability bot-
tleneck associated with the in-mapper combining pattern. It critically depends
on having sufficient memory to store intermediate results until the mapper has
completely processed all key-value pairs in an input split. In the word count
example, the memory footprint is bound by the vocabulary size, since it is
theoretically possible that a mapper encounters every term in the collection.
Heap’s Law, a well-known result in information retrieval, accurately models the
growth of vocabulary size as a function of the collection size—the somewhat
surprising fact is that the vocabulary size never stops growing.3 Therefore, the
algorithm in Algorithm 3.3 will scale only up to a point, beyond which the
associative array holding the partial term counts will no longer fit in memory.4

One common solution to limiting memory usage when using the in-mapper
combining technique is to “block” input key-value pairs and “flush” in-memory
data structures periodically. The idea is simple: instead of emitting intermedi-
ate data only after every key-value pair has been processed, emit partial results
after processing every n key-value pairs. This is straightforwardly implemented
with a counter variable that keeps track of the number of input key-value pairs
that have been processed. As an alternative, the mapper could keep track of
its own memory footprint and flush intermediate key-value pairs once memory
usage has crossed a certain threshold. In both approaches, either the block
size or the memory usage threshold needs to be determined empirically: with
too large a value, the mapper may run out of memory, but with too small a
value, opportunities for local aggregation may be lost. Furthermore, in Hadoop

3In more detail, Heap’s Law relates the vocabulary size V to the collection size as follows:
V = kT b, where T is the number of tokens in the collection. Typical values of the parameters
k and b are: 30 ≤ k ≤ 100 and b ∼ 0.5 ([101], p. 81).

4A few more details: note what matters is that the partial term counts encountered within
particular input split fits into memory. However, as collection sizes increase, one will often
want to increase the input split size to limit the growth of the number of map tasks (in order
to reduce the number of distinct copy operations necessary to shuffle intermediate data over
the network).

physical memory is split between multiple tasks that may be running on a node
concurrently; these tasks are all competing for finite resources, but since the
tasks are not aware of each other, it is difficult to coordinate resource consump-
tion effectively. In practice, however, one often encounters diminishing returns
in performance gains with increasing buffer sizes, such that it is not worth the
effort to search for an optimal buffer size (personal communication, Jeff Dean).

In MapReduce algorithms, the extent to which efficiency can be increased
through local aggregation depends on the size of the intermediate key space,
the distribution of keys themselves, and the number of key-value pairs that
are emitted by each individual map task. Opportunities for aggregation, after
all, come from having multiple values associated with the same key (whether
one uses combiners or employs the in-mapper combining pattern). In the word
count example, local aggregation is effective because many words are encoun-
tered multiple times within a map task. Local aggregation is also an effective
technique for dealing with reduce stragglers (see Section 2.3) that result from
a highly-skewed (e.g., Zipfian) distribution of values associated with interme-
diate keys. In our word count example, we do not filter frequently-occurring
words: therefore, without local aggregation, the reducer that’s responsible for
computing the count of ‘the’ will have a lot more work to do than the typical
reducer, and therefore will likely be a straggler. With local aggregation (either
combiners or in-mapper combining), we substantially reduce the number of
values associated with frequently-occurring terms, which alleviates the reduce
straggler problem.

Algorithmic Correctness with Local Aggregation

Although use of combiners can yield dramatic reductions in algorithm running
time, care must be taken in applying them. Since combiners in Hadoop are
viewed as optional optimizations, the correctness of the algorithm cannot de-
pend on computations performed by the combiner or depend on them even
being run at all. In any MapReduce program, the reducer input key-value type
must match the mapper output key-value type: this implies that the combiner
input and output key-value types must match the mapper output key-value
type (which is the same as the reducer input key-value type). In cases where
the reduce computation is both commutative and associative, the reducer can
also be used (unmodified) as the combiner (as is the case with the word count
example). In the general case, however, combiners and reducers are not inter-
changeable.

Consider a simple example: we have a large dataset where input keys are
strings and input values are integers, and we wish to compute the mean of
all integers associated with the same key (rounded to the nearest integer). A
real-world example might be a large user log from a popular website, where
keys represent user ids and values represent some measure of activity such as
elapsed time for a particular session—the task would correspond to computing
the mean session length on a per-user basis, which would be useful for under-
standing user demographics. Algorithm 3.4 shows the pseudo-code of a simple

Algorithm 3.4 Compute the mean of values associated with the same key

The mapper is the identify function; the mean is computed in the reducer.

1 class Mapper {

2 def map(key: Text, value: Int) = {

3 emit(key, value)

4 }

5 }

6

7 class Reducer {

8 def reduce(key: Text, values: Iterable[Int]) {

9 for (value <- values) {

10 sum += value

11 cnt += 1

12 }

13 emit(key, sum/cnt)

14 }

15 }

algorithm for accomplishing this task that does not involve combiners. We
use an identity mapper, which simply passes all input key-value pairs to the
reducers (appropriately grouped and sorted). The reducer keeps track of the
running sum and the number of integers encountered. This information is used
to compute the mean once all values are processed. The mean is then emitted
as the output value in the reducer (with the input string as the key).

This algorithm will indeed work, but suffers from the same drawbacks as the
basic word count algorithm in Algorithm 3.1: it requires shuffling all key-value
pairs from mappers to reducers across the network, which is highly inefficient.
Unlike in the word count example, the reducer cannot be used as a combiner in
this case. Consider what would happen if we did: the combiner would compute
the mean of an arbitrary subset of values associated with the same key, and
the reducer would compute the mean of those values. As a concrete example,
we know that:

Mean(1, 2, 3, 4, 5) 6= Mean(Mean(1, 2),Mean(3, 4, 5)) (3.1)

In general, the mean of means of arbitrary subsets of a set of numbers is not
the same as the mean of the set of numbers. Therefore, this approach would
not produce the correct result.5

So how might we properly take advantage of combiners? An attempt is
shown in Algorithm 3.5. The mapper remains the same, but we have added a
combiner that partially aggregates results by computing the numeric compo-
nents necessary to arrive at the mean. The combiner receives each string and

5There is, however, one special case in which using reducers as combiners would produce
the correct result: if each combiner computed the mean of equal-size subsets of the values.
However, since such fine-grained control over the combiners is impossible in MapReduce,
such a scenario is highly unlikely.

Algorithm 3.5 Compute the mean of values associated with the same key

Note that this algorithm is incorrect. The mismatch between combiner input
and output key-value types violates the MapReduce programming model.

1 class Mapper {

2 def map(key: Text, value: Int) =

3 emit(key, value)

4 }

5

6 class Combiner {

7 def reduce(key: Text, values: Iterable[Int]) = {

8 for (value <- values) {

9 sum += value

10 cnt += 1

11 }

12 emit(key, (sum, cnt))

13 }

14 }

15

16 class Reducer {

17 def reduce(key: Text, values: Iterable[Pair]) = {

18 for ((s, c) <- values) {

19 sum += s

20 cnt += c

21 }

22 emit(key, sum/cnt)

23 }

24 }

the associated list of integer values, from which it computes the sum of those
values and the number of integers encountered (i.e., the count). The sum and
count are packaged into a pair, and emitted as the output of the combiner, with
the same string as the key. In the reducer, pairs of partial sums and counts
can be aggregated to arrive at the mean. Up until now, all keys and values
in our algorithms have been primitives (string, integers, etc.). However, there
are no prohibitions in MapReduce for more complex types,6 and, in fact, this
represents a key technique in MapReduce algorithm design that we introduced
at the beginning of this chapter. We will frequently encounter complex keys
and values throughput the rest of this book.

Unfortunately, this algorithm will not work. Recall that combiners must
have the same input and output key-value type, which also must be the same
as the mapper output type and the reducer input type. This is clearly not
the case. To understand why this restriction is necessary in the programming
model, remember that combiners are optimizations that cannot change the
correctness of the algorithm. So let us remove the combiner and see what

6In Hadoop, either custom types or types defined using a library such as Protocol Buffers,
Thrift, or Avro.

Algorithm 3.6 Compute the mean of values associated with the same key

This algorithm correctly takes advantage of combiners by storing the sum and
count separately as a pair.

1 class Mapper {

2 def map(key: Text, value: Int) =

3 emit(key, (value, 1))

4 }

5

6 class Combiner {

7 def reduce(key: Text, values: Iterable[Pair]) = {

8 for ((s, c) <- values) {

9 sum += s

10 cnt += c

11 }

12 emit(key, (sum, cnt))

13 }

14 }

15

16 class Reducer {

17 def reduce(key: Text, values: Iterable[Pair]) = {

18 for ((s, c) <- values) {

19 sum += s

20 cnt += c

21 }

22 emit(key, sum/cnt)

23 }

24 }

happens: the output value type of the mapper is integer, so the reducer expects
to receive a list of integers as values. But the reducer actually expects a list of
pairs! The correctness of the algorithm is contingent on the combiner running
on the output of the mappers, and more specifically, that the combiner is
run exactly once. Recall from our previous discussion that Hadoop makes no
guarantees on how many times combiners are called; it could be zero, one, or
multiple times. This violates the MapReduce programming model.

Another stab at the solution is shown in Algorithm 3.6, and this time, the
algorithm is correct. In the mapper we emit as the value a pair consisting
of the integer and one—this corresponds to a partial count over one instance.
The combiner separately aggregates the partial sums and the partial counts
(as before), and emits pairs with updated sums and counts. The reducer is
similar to the combiner, except that the mean is computed at the end. In
essence, this algorithm transforms a non-associative operation (mean of num-
bers) into an associative operation (element-wise sum of a pair of numbers,
with an additional division at the very end).

Let us verify the correctness of this algorithm by repeating the previous
exercise: What would happen if no combiners were run? With no combiners,

Algorithm 3.7 Compute the mean of values associated with the same key

This mapper illustrates the in-mapper combining design pattern. The reducer
is the same as in Algorithm 3.6

1 class Mapper {

2 val sums = new Map()

3 val counts = new Map()

4

5 def map(key: Text, value: Int) = {

6 sums(key) += value

7 counts(key) += 1

8 }

9

10 def cleanup() = {

11 for (key <- counts.keys) {

12 emit(key, (sums(key), counts(key)))

13 }

14 }

15 }

the mappers would send pairs (as values) directly to the reducers. There would
be as many intermediate pairs as there were input key-value pairs, and each
of those would consist of an integer and one. The reducer would still arrive at
the correct sum and count, and hence the mean would be correct. Now add
in the combiners: the algorithm would remain correct, no matter how many
times they run, since the combiners merely aggregate partial sums and counts
to pass along to the reducers. Note that although the output key-value type
of the combiner must be the same as the input key-value type of the reducer,
the reducer can emit final key-value pairs of a different type.

Finally, in Algorithm 3.7, we present an even more efficient algorithm that
exploits the in-mapper combining pattern. Inside the mapper, the partial sums
and counts associated with each string are held in memory across input key-
value pairs. Intermediate key-value pairs are emitted only after the entire input
split has been processed; similar to before, the value is a pair consisting of the
sum and count. The reducer is exactly the same as in Algorithm 3.6. Moving
partial aggregation from the combiner directly into the mapper is subjected to
all the tradeoffs and caveats discussed earlier this section, but in this case the
memory footprint of the data structures for holding intermediate data is likely
to be modest, making this variant algorithm an attractive option.

3.2 Pairs and Stripes

One common approach for synchronization in MapReduce is to construct com-
plex keys and values in such a way that data necessary for a computation are
naturally brought together by the execution framework. We first touched on
this technique in the previous section, in the context of “packaging” partial

sums and counts in a complex value (i.e., pair) that is passed from mapper
to combiner to reducer. Building on previously published work [54, 94], this
section introduces two common design patterns we have dubbed “pairs” and
“stripes” that exemplify this strategy.

As a running example, we focus on the problem of building word co-
occurrence matrices from large corpora, a common task in corpus linguistics
and statistical natural language processing. Formally, the co-occurrence ma-
trix of a corpus is a square n × n matrix where n is the number of unique
words in the corpus (i.e., the vocabulary size). A cell mij contains the number
of times word wi co-occurs with word wj within a specific context—a natural
unit such as a sentence, paragraph, or a document, or a certain window of m
words (where m is an application-dependent parameter). Note that the upper
and lower triangles of the matrix are identical since co-occurrence is a symmet-
ric relation, though in the general case relations between words need not be
symmetric. For example, a co-occurrence matrix M where mij is the count of
how many times word i was immediately succeeded by word j would usually
not be symmetric.

This task is quite common in text processing and provides the starting
point to many other algorithms, e.g., for computing statistics such as pointwise
mutual information [38], for unsupervised sense clustering [136], and more gen-
erally, a large body of work in lexical semantics based on distributional profiles
of words, dating back to Firth [55] and Harris [69] in the 1950s and 1960s. The
task also has applications in information retrieval (e.g., automatic thesaurus
construction [137] and stemming [157]), and other related fields such as text
mining. More importantly, this problem represents a specific instance of the
task of estimating distributions of discrete joint events from a large number of
observations, a very common task in statistical natural language processing for
which there are nice MapReduce solutions. Indeed, concepts presented here are
also used in Chapter 7 when we discuss expectation-maximization algorithms.

Beyond text processing, problems in many application domains share sim-
ilar characteristics. For example, a large retailer might analyze point-of-sale
transaction records to identify correlated product purchases (e.g., customers
who buy this tend to also buy that), which would assist in inventory manage-
ment and product placement on store shelves. Similarly, an intelligence analyst
might wish to identify associations between re-occurring financial transactions
that are otherwise unrelated, which might provide a clue in thwarting terrorist
activity. The algorithms discussed in this section could be adapted to tackle
these related problems.

It is obvious that the space requirement for the word co-occurrence problem
is O(n2), where n is the size of the vocabulary, which for real-world English
corpora can be hundreds of thousands of words, or even billions of words in web-
scale collections.7 The computation of the word co-occurrence matrix is quite
simple if the entire matrix fits into memory—however, in the case where the

7The size of the vocabulary depends on the definition of a “word” and techniques (if any)
for corpus pre-processing. One common strategy is to replace all rare words (below a certain
frequency) with a “special” token such as <UNK> (which stands for “unknown”) to model

matrix is too big to fit in memory, a näıve implementation on a single machine
can be very slow as memory is paged to disk. Although compression techniques
can increase the size of corpora for which word co-occurrence matrices can be
constructed on a single machine, it is clear that there are inherent scalability
limitations. We describe two MapReduce algorithms for this task that can
scale to large corpora.

Pseudo-code for the first algorithm, dubbed the “pairs” approach, is shown
in Algorithm 3.8. As usual, document ids and the corresponding contents make
up the input key-value pairs. The mapper processes each input document and
emits intermediate key-value pairs with each co-occurring word pair as the key
and the integer one (i.e., the count) as the value. This is straightforwardly
accomplished by two nested loops: the outer loop iterates over all words (the
left element in the pair), and the inner loop iterates over all neighbors of the
first word (the right element in the pair). The neighbors of a word can either
be defined in terms of a sliding window or some other contextual unit such as
a sentence. The MapReduce execution framework guarantees that all values
associated with the same key are brought together in the reducer. Thus, in
this case the reducer simply sums up all the values associated with the same
co-occurring word pair to arrive at the absolute count of the joint event in the
corpus, which is then emitted as the final key-value pair. Each pair corresponds
to a cell in the word co-occurrence matrix. This algorithm illustrates the use
of complex keys in order to coordinate distributed computations.

An alternative approach, dubbed the “stripes” approach, is presented in
Algorithm 3.9. Like the pairs approach, co-occurring word pairs are generated
by two nested loops. However, the major difference is that instead of emitting
intermediate key-value pairs for each co-occurring word pair, co-occurrence
information is first stored in an associative array, denoted H. The mapper
emits key-value pairs with words as keys and corresponding associative arrays
as values, where each associative array encodes the co-occurrence counts of the
neighbors of a particular word (i.e., its context). The MapReduce execution
framework guarantees that all associative arrays with the same key will be
brought together in the reduce phase of processing. The reducer performs an
element-wise sum of all associative arrays with the same key, accumulating
counts that correspond to the same cell in the co-occurrence matrix. The final
associative array is emitted with the same word as the key. In contrast to the
pairs approach, each final key-value pair encodes a row in the co-occurrence
matrix.

It is immediately obvious that the pairs algorithm generates an immense
number of key-value pairs compared to the stripes approach. The stripes rep-
resentation is much more compact, since with pairs the left element is repeated
for every co-occurring word pair. The stripes approach also generates fewer
and shorter intermediate keys, and therefore the execution framework has less
sorting to perform. However, values in the stripes approach are more complex,

out-of-vocabulary words. Another technique involves replacing numeric digits with #, such
that 1.32 and 1.19 both map to the same token (#.##).

Algorithm 3.8 Compute word co-occurrence (“pairs” approach)

With “pairs”, each co-occurring pair of words is counted separately.

1 class Mapper {

2 def map(key: Long, value: Text) = {

3 for (u <- tokenize(value)) {

4 for (v <- neighbors(u)) {

5 emit((u, v), 1)

6 }

7 }

8 }

9 }

10

11 class Reducer {

12 def reduce(key: Pair, values: Iterable[Int]) = {

13 for (value <- values) {

14 sum += value

15 }

16 emit(key, sum)

17 }

18 }

Algorithm 3.9 Compute word co-occurrence (“stripes” approach)

With “stripes”, all words co-occurring with a word are counted together.

1 class Mapper {

2 def map(key: Long, value: Text) = {

3 for (u <- tokenize(value)) {

4 val map = new Map()

5 for (v <- neighbors(u)) {

6 map(v) += 1

7 }

8 emit(u, map)

9 }

10 }

11 }

12

13 class Reducer {

14 def reduce(key: Text, values: Iterable[Map]) = {

15 val map = new Map()

16 for (value <- values) {

17 map += value

18 }

19 emit(key, map)

20 }

21 }

and come with more serialization and deserialization overhead than with the
pairs approach.

Both algorithms can benefit from the use of combiners, since the respec-
tive operations in their reducers (addition and element-wise sum of associative
arrays) are both commutative and associative. However, combiners with the
stripes approach have more opportunities to perform local aggregation because
the key space is the vocabulary—associative arrays can be merged whenever a
word is encountered multiple times by a mapper. In contrast, the key space
in the pairs approach is the cross of the vocabulary with itself, which is far
larger—counts can be aggregated only when the same co-occurring word pair
is observed multiple times by an individual mapper (which is less likely than
observing multiple occurrences of a word, as in the stripes case).

For both algorithms, the in-mapper combining optimization discussed in the
previous section can also be applied; the modification is sufficiently straightfor-
ward that we leave the implementation as an exercise for the reader. However,
the above caveats remain: there will be far fewer opportunities for partial aggre-
gation in the pairs approach due to the sparsity of the intermediate key space.
The sparsity of the key space also limits the effectiveness of in-memory combin-
ing, since the mapper may run out of memory to store partial counts before all
documents are processed, necessitating some mechanism to periodically emit
key-value pairs (which further limits opportunities to perform partial aggre-
gation). Similarly, for the stripes approach, memory management will also be
more complex than in the simple word count example. For common terms, the
associative array may grow to be quite large, necessitating some mechanism to
periodically flush in-memory structures.

It is important to consider potential scalability bottlenecks of either al-
gorithm. The stripes approach makes the assumption that, at any point in
time, each associative array is small enough to fit into memory—otherwise,
memory paging will significantly impact performance. The size of the associa-
tive array is bounded by the vocabulary size, which is itself unbounded with
respect to corpus size (recall the previous discussion of Heap’s Law). There-
fore, as the sizes of corpora increase, this will become an increasingly pressing
issue—perhaps not for gigabyte-sized corpora, but certainly for terabyte-sized
and petabyte-sized corpora that will be commonplace tomorrow. The pairs
approach, on the other hand, does not suffer from this limitation, since it does
not need to hold intermediate data in memory.

Given this discussion, which approach is faster? Here, we present previously-
published results [94] that empirically answered this question. We have imple-
mented both algorithms in Hadoop and applied them to a corpus of 2.27 million
documents from the Associated Press Worldstream (APW) totaling 5.7 GB.8

Prior to working with Hadoop, the corpus was first preprocessed as follows:
All XML markup was removed, followed by tokenization and stopword removal
using standard tools from the Lucene search engine. All tokens were then re-

8This was a subset of the English Gigaword corpus (version 3) distributed by the Lin-
guistic Data Consortium (LDC catalog number LDC2007T07).

placed with unique integers for a more efficient encoding. Figure 3.1 compares
the running time of the pairs and stripes approach on different fractions of
the corpus, with a co-occurrence window size of two. These experiments were
performed on a Hadoop cluster with 19 slave nodes, each with two single-core
processors and two disks.

Results demonstrate that the stripes approach is much faster than the pairs
approach: 666 seconds (∼11 minutes) compared to 3758 seconds (∼62 minutes)
for the entire corpus (improvement by a factor of 5.7). The mappers in the
pairs approach generated 2.6 billion intermediate key-value pairs totaling 31.2
GB. After the combiners, this was reduced to 1.1 billion key-value pairs, which
quantifies the amount of intermediate data transferred across the network. In
the end, the reducers emitted a total of 142 million final key-value pairs (the
number of non-zero cells in the co-occurrence matrix). On the other hand, the
mappers in the stripes approach generated 653 million intermediate key-value
pairs totaling 48.1 GB. After the combiners, only 28.8 million key-value pairs
remained. The reducers emitted a total of 1.69 million final key-value pairs
(the number of rows in the co-occurrence matrix). As expected, the stripes
approach provided more opportunities for combiners to aggregate intermediate
results, thus greatly reducing network traffic in the shuffle and sort phase.
Figure 3.1 also shows that both algorithms exhibit highly desirable scaling
characteristics—linear in the amount of input data. This is confirmed by a
linear regression applied to the running time data, which yields an R2 value
close to one.

An additional series of experiments explored the scalability of the stripes
approach along another dimension: the size of the cluster. These experiments
were made possible by Amazon’s EC2 service, which allows users to rapidly
provision clusters of varying sizes for limited durations (for more information,
refer back to our discussion of utility computing in Section 1.1). Virtualized
computational units in EC2 are called instances, and the user is charged only
for the instance-hours consumed. Figure 3.2 (left) shows the running time of the
stripes algorithm (on the same corpus, with same setup as before), on varying
cluster sizes, from 20 slave “small” instances all the way up to 80 slave “small”
instances (along the x -axis). Running times are shown with solid squares.
Figure 3.2 (right) recasts the same results to illustrate scaling characteristics.
The circles plot the relative size and speedup of the EC2 experiments, with
respect to the 20-instance cluster. These results show highly desirable linear
scaling characteristics (i.e., doubling the cluster size makes the job twice as
fast). This is confirmed by a linear regression with an R2 value close to one.

Viewed abstractly, the pairs and stripes algorithms represent two different
approaches to counting co-occurring events from a large number of observa-
tions. This general description captures the gist of many algorithms in fields
as diverse as text processing, data mining, and bioinformatics. For this rea-
son, these two design patterns are broadly useful and frequently observed in a
variety of applications.

To conclude, it is worth noting that the pairs and stripes approaches rep-
resent endpoints along a continuum of possibilities. The pairs approach indi-

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Percentage of the APW corpus

R2 = 0.992

R2 = 0.999

"stripes" approach
"pairs" approach

Figure 3.1: Running time of the “pairs” and “stripes” algorithms for computing
word co-occurrence matrices on different fractions of the APW corpus. These
experiments were performed on a Hadoop cluster with 19 slaves, each with two
single-core processors and two disks.

vidually records each co-occurring event, while the stripes approach records all
co-occurring events with respect a conditioning event. A middle ground might
be to record a subset of the co-occurring events with respect to a condition-
ing event. We might divide up the entire vocabulary into b buckets (e.g., via
hashing), so that words co-occurring with wi would be divided into b smaller
“sub-stripes”, associated with ten separate keys, (wi, 1), (wi, 2) . . . (wi, b). This
would be a reasonable solution to the memory limitations of the stripes ap-
proach, since each of the sub-stripes would be smaller. In the case of b = |V |,
where |V | is the vocabulary size, this is equivalent to the pairs approach. In
the case of b = 1, this is equivalent to the standard stripes approach.

3.3 Computing Relative Frequencies

Let us build on the pairs and stripes algorithms presented in the previous
section and continue with our running example of constructing the word co-
occurrence matrix M for a large corpus. Recall that in this large square n× n
matrix, where n = |V | (the vocabulary size), cell mij contains the number of
times word wi co-occurs with word wj within a specific context. The drawback
of absolute counts is that it doesn’t take into account the fact that some words
appear more frequently than others. Word wi may co-occur frequently with wj

 0

 1000

 2000

 3000

 4000

 5000

 10 20 30 40 50 60 70 80 90

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Size of EC2 cluster (number of slave instances)

1x

2x

3x

4x

1x 2x 3x 4x

R
el

at
iv

e
sp

ee
du

p

Relative size of EC2 cluster

R2 = 0.997

Figure 3.2: Running time of the stripes algorithm on the APW corpus with
Hadoop clusters of different sizes from EC2 (left). Scaling characteristics (rel-
ative speedup) in terms of increasing Hadoop cluster size (right).

simply because one of the words is very common. A simple remedy is to convert
absolute counts into relative frequencies, f(wj |wi). That is, what proportion
of the time does wj appear in the context of wi? This can be computed using
the following equation:

f(wj |wi) =
N(wi, wj)∑
w′ N(wi, w′)

(3.2)

Here, N(·, ·) indicates the number of times a particular co-occurring word pair
is observed in the corpus. We need the count of the joint event (word co-
occurrence), divided by what is known as the marginal (the sum of the counts
of the conditioning variable co-occurring with anything else).

Computing relative frequencies with the stripes approach is straightforward.
In the reducer, counts of all words that co-occur with the conditioning variable
(wi in the above example) are available in the associative array. Therefore, it
suffices to sum all those counts to arrive at the marginal (i.e.,

∑
w′ N(wi, w

′)),
and then divide all the joint counts by the marginal to arrive at the relative
frequency for all words. This implementation requires minimal modification to
the original stripes algorithm in Algorithm 3.9, and illustrates the use of com-
plex data structures to coordinate distributed computations in MapReduce.
Through appropriate structuring of keys and values, one can use the Map-
Reduce execution framework to bring together all the pieces of data required
to perform a computation. Note that, as with before, this algorithm also as-
sumes that each associative array fits into memory.

How might one compute relative frequencies with the pairs approach? In
the pairs approach, the reducer receives (wi, wj) as the key and the count as
the value. From this alone it is not possible to compute f(wj |wi) since we do
not have the marginal. Fortunately, as in the mapper, the reducer can preserve
state across multiple keys. Inside the reducer, we can buffer in memory all the
words that co-occur with wi and their counts, in essence building the associative
array in the stripes approach. To make this work, we must define the sort order
of the pair so that keys are first sorted by the left word, and then by the right
word. Given this ordering, we can easily detect if all pairs associated with the
word we are conditioning on (wi) have been encountered. At that point we can
go back through the in-memory buffer, compute the relative frequencies, and
then emit those results in the final key-value pairs.

There is one more modification necessary to make this algorithm work.
We must ensure that all pairs with the same left word are sent to the same
reducer. This, unfortunately, does not happen automatically: recall that the
default partitioner is based on the hash value of the intermediate key, modulo
the number of reducers. For a complex key, the raw byte representation is
used to compute the hash value. As a result, there is no guarantee that, for
example, (dog, aardvark) and (dog, zebra) are assigned to the same reducer.
To produce the desired behavior, we must define a custom partitioner that only
pays attention to the left word. That is, the partitioner should partition based
on the hash of the left word only.

This algorithm will indeed work, but it suffers from the same drawback as
the stripes approach: as the size of the corpus grows, so does that vocabulary
size, and at some point there will not be sufficient memory to store all co-
occurring words and their counts for the word we are conditioning on. For
computing the co-occurrence matrix, the advantage of the pairs approach is
that it doesn’t suffer from any memory bottlenecks. Is there a way to modify
the basic pairs approach so that this advantage is retained?

As it turns out, such an algorithm is indeed possible, although it requires
the coordination of several mechanisms in MapReduce. The insight lies in
properly sequencing data presented to the reducer. If it were possible to some-
how compute (or otherwise obtain access to) the marginal in the reducer before
processing the joint counts, the reducer could simply divide the joint counts

key values
(dog, ∗) [6327, 8514, . . .] compute marginal:∑

w′ N(dog, w′) = 42908
(dog, aardvark) [2,1] f(aardvark|dog) = 3/42908
(dog, aardwolf) [1] f(aardwolf|dog) = 1/42908
. . .
(dog, zebra) [2,1,1,1] f(zebra|dog) = 5/42908
(doge, ∗) [682, . . .] compute marginal:∑

w′ N(doge, w′) = 1267
. . .

Figure 3.3: Example of the sequence of key-value pairs presented to the reducer
in the pairs algorithm for computing relative frequencies. This illustrates the
application of the order inversion design pattern.

by the marginal to compute the relative frequencies. The notion of “before”
and “after” can be captured in the ordering of key-value pairs, which can be
explicitly controlled by the programmer. That is, the programmer can define
the sort order of keys so that data needed earlier is presented to the reducer be-
fore data that is needed later. However, we still need to compute the marginal
counts. Recall that in the basic pairs algorithm, each mapper emits a key-value
pair with the co-occurring word pair as the key. To compute relative frequen-
cies, we modify the mapper so that it additionally emits a “special” key of
the form (wi, ∗), with a value of one, that represents the contribution of the
word pair to the marginal. Through use of combiners, these partial marginal
counts will be aggregated before being sent to the reducers. Alternatively, the
in-mapper combining pattern can be used to even more efficiently aggregate
marginal counts.

In the reducer, we must make sure that the special key-value pairs rep-
resenting the partial marginal contributions are processed before the normal
key-value pairs representing the joint counts. This is accomplished by defining
the sort order of the keys so that pairs with the special symbol of the form
(wi, ∗) are ordered before any other key-value pairs where the left word is wi.
In addition, as with before we must also properly define the partitioner to pay
attention to only the left word in each pair. With the data properly sequenced,
the reducer can directly compute the relative frequencies.

A concrete example is shown in Figure 3.3, which lists the sequence of key-
value pairs that a reducer might encounter. First, the reducer is presented with
the special key (dog, ∗) and a number of values, each of which represents a par-
tial marginal contribution from the map phase (assume here either combiners or
in-mapper combining, so the values represent partially aggregated counts). The
reducer accumulates these counts to arrive at the marginal,

∑
w′ N(dog, w′).

The reducer holds on to this value as it processes subsequent keys. After
(dog, ∗), the reducer will encounter a series of keys representing joint counts;
let’s say the first of these is the key (dog, aardvark). Associated with this key

will be a list of values representing partial joint counts from the map phase
(two separate values in this case). Summing these counts will yield the final
joint count, i.e., the number of times dog and aardvark co-occur in the entire
collection. At this point, since the reducer already knows the marginal, sim-
ple arithmetic suffices to compute the relative frequency. All subsequent joint
counts are processed in exactly the same manner. When the reducer encoun-
ters the next special key-value pair (doge, ∗), the reducer resets its internal
state and starts to accumulate the marginal all over again. Observe that the
memory requirement for this algorithm is minimal, since only the marginal
(an integer) needs to be stored. No buffering of individual co-occurring word
counts is necessary, and therefore we have eliminated the scalability bottleneck
of the previous algorithm.

This design pattern, which we call “order inversion”, occurs surprisingly
often and across applications in many domains. It is so named because through
proper coordination, we can access the result of a computation in the reducer
(for example, an aggregate statistic) before processing the data needed for that
computation. The key insight is to convert the sequencing of computations
into a sorting problem. In most cases, an algorithm requires data in some fixed
order: by controlling how keys are sorted and how the key space is partitioned,
we can present data to the reducer in the order necessary to perform the proper
computations. This greatly cuts down on the amount of partial results that
the reducer needs to hold in memory.

To summarize, the specific application of the order inversion design pattern
for computing relative frequencies requires the following:

• Emitting a special key-value pair for each co-occurring word pair in the
mapper to capture its contribution to the marginal.

• Controlling the sort order of the intermediate key so that the key-value
pairs representing the marginal contributions are processed by the reducer
before any of the pairs representing the joint word co-occurrence counts.

• Defining a custom partitioner to ensure that all pairs with the same left
word are shuffled to the same reducer.

• Preserving state across multiple keys in the reducer to first compute the
marginal based on the special key-value pairs and then dividing the joint
counts by the marginals to arrive at the relative frequencies.

As we will see in Chapter 4, this design pattern is also used in inverted index
construction to properly set compression parameters for postings lists.

3.4 Secondary Sorting

MapReduce sorts intermediate key-value pairs by the keys during the shuffle
and sort phase, which is very convenient if computations inside the reducer rely
on sort order (e.g., the order inversion design pattern described in the previous

section). However, what if in addition to sorting by key, we also need to sort
by value? Google’s MapReduce implementation provides built-in functionality
for (optional) secondary sorting, which guarantees that values arrive in sorted
order. Hadoop, unfortunately, does not have this capability built in.

Consider the example of sensor data from a scientific experiment: there are
m sensors each taking readings on continuous basis, where m is potentially
a large number. A dump of the sensor data might look something like the
following, where rx after each timestamp represents the actual sensor readings
(unimportant for this discussion, but may be a series of values, one or more
complex records, or even raw bytes of images).

(t1,m1, r80521)
(t1,m2, r14209)
(t1,m3, r76042)
...
(t2,m1, r21823)
(t2,m2, r66508)
(t2,m3, r98347)

Suppose we wish to reconstruct the activity at each individual sensor over time.
A MapReduce program to accomplish this might map over the raw data and
emit the sensor id as the intermediate key, with the rest of each record as the
value:

m1 → (t1, r80521)

This would bring all readings from the same sensor together in the reducer.
However, since MapReduce makes no guarantees about the ordering of values
associated with the same key, the sensor readings will not likely be in temporal
order. The most obvious solution is to buffer all the readings in memory and
then sort by timestamp before additional processing. However, it should be
apparent by now that any in-memory buffering of data introduces a potential
scalability bottleneck. What if we are working with a high frequency sensor
or sensor readings over a long period of time? What if the sensor readings
themselves are large complex objects? This approach may not scale in these
cases—the reducer would run out of memory trying to buffer all values associ-
ated with the same key.

This is a common problem, since in many applications we wish to first group
together data one way (e.g., by sensor id), and then sort within the groupings
another way (e.g., by time). Fortunately, there is a general purpose solution,
which we call the “value-to-key conversion” design pattern. The basic idea is
to move part of the value into the intermediate key to form a composite key,
and let the MapReduce execution framework handle the sorting. In the above
example, instead of emitting the sensor id as the key, we would emit the sensor
id and the timestamp as a composite key:

(m1, t1)→ (r80521)

The sensor reading itself now occupies the value. We must define the inter-
mediate key sort order to first sort by the sensor id (the left element in the
pair) and then by the timestamp (the right element in the pair). We must
also implement a custom partitioner so that all pairs associated with the same
sensor are shuffled to the same reducer.

Properly orchestrated, the key-value pairs will be presented to the reducer
in the correct sorted order:

(m1, t1)→ [(r80521)]
(m1, t2)→ [(r21823)]
(m1, t3)→ [(r146925)]
. . .

However, note that sensor readings are now split across multiple keys. The
reducer will need to preserve state and keep track of when readings associated
with the current sensor end and the next sensor begin.9

The basic tradeoff between the two approaches discussed above (buffer and
in-memory sort vs. value-to-key conversion) is where sorting is performed. One
can explicitly implement secondary sorting in the reducer, which is likely to be
faster but suffers from a scalability bottleneck.10 With value-to-key conversion,
sorting is offloaded to the MapReduce execution framework. Note that this
approach can be arbitrarily extended to tertiary, quaternary, etc. sorting. This
pattern results in many more keys for the framework to sort, but distributed
sorting is a task that the MapReduce runtime excels at since it lies at the heart
of the programming model.

3.5 Summary

This chapter provides a guide on the design of MapReduce algorithms. In
particular, we present a number of “design patterns” that capture effective
solutions to common problems. In summary, they are:

• “In-mapper combining”, where the functionality of the combiner is moved
into the mapper. Instead of emitting intermediate output for every in-
put key-value pair, the mapper aggregates partial results across multiple
input records and only emits intermediate key-value pairs after some
amount of local aggregation is performed.

• The related patterns “pairs” and “stripes” for keeping track of joint
events from a large number of observations. In the pairs approach, we
keep track of each joint event separately, whereas in the stripes approach

9Alternatively, Hadoop provides API hooks to define “groups” of intermediate keys that
should be processed together in the reducer.

10Note that, in principle, this need not be an in-memory sort. It is entirely possible to
implement a disk-based sort within the reducer, although one would be duplicating function-
ality that is already present in the MapReduce execution framework. It makes more sense
to take advantage of functionality that is already present with value-to-key conversion.

we keep track of all events that co-occur with the same event. Although
the stripes approach is significantly more efficient, it requires memory
on the order of the size of the event space, which presents a scalability
bottleneck.

• “Order inversion”, where the main idea is to convert the sequencing of
computations into a sorting problem. Through careful orchestration, we
can send the reducer the result of a computation (e.g., an aggregate statis-
tic) before it encounters the data necessary to produce that computation.

• “Value-to-key conversion”, which provides a scalable solution for sec-
ondary sorting. By moving part of the value into the key, we can exploit
the MapReduce execution framework itself for sorting.

Ultimately, controlling synchronization in the MapReduce programming model
boils down to effective use of the following techniques:

1. Constructing complex keys and values that bring together data necessary
for a computation. This is used in all of the above design patterns.

2. Executing user-specified initialization and termination code in either the
mapper or reducer. For example, in-mapper combining depends on emis-
sion of intermediate key-value pairs in the map task termination code.

3. Preserving state across multiple inputs in the mapper and reducer. This
is used in in-mapper combining, order inversion, and value-to-key con-
version.

4. Controlling the sort order of intermediate keys. This is used in order
inversion and value-to-key conversion.

5. Controlling the partitioning of the intermediate key space. This is used
in order inversion and value-to-key conversion.

This concludes our overview of MapReduce algorithm design. It should be clear
by now that although the programming model forces one to express algorithms
in terms of a small set of rigidly-defined components, there are many tools at
one’s disposal to shape the flow of computation. In the next few chapters, we
will focus on specific classes of MapReduce algorithms: for inverted indexing in
Chapter 4, for graph processing in Chapter 5, and for expectation-maximization
in Chapter 7.

