
Chapter 2

MapReduce Basics

This is a post-production manuscript of: Jimmy Lin and Chris Dyer. Data-Intensive

Text Processing with MapReduce. Morgan & Claypool Publishers, 2010. This ver-

sion was compiled on December 25, 2017.

The only feasible approach to tackling large-data problems today is to divide
and conquer, a fundamental concept in computer science that is introduced
very early in typical undergraduate curricula. The basic idea is to partition a
large problem into smaller sub-problems. To the extent that the sub-problems
are independent [5], they can be tackled in parallel by different workers—
threads in a processor core, cores in a multi-core processor, multiple processors
in a machine, or many machines in a cluster. Intermediate results from each
individual worker are then combined to yield the final output.1

The general principles behind divide-and-conquer algorithms are broadly
applicable to a wide range of problems in many different application domains.
However, the details of their implementations are varied and complex. For
example, the following are just some of the issues that need to be addressed:

• How do we break up a large problem into smaller tasks? More specifi-
cally, how do we decompose the problem so that the smaller tasks can be
executed in parallel?

• How do we assign tasks to workers distributed across a potentially large
number of machines (while keeping in mind that some workers are better
suited to running some tasks than others, e.g., due to available resources,
locality constraints, etc.)?

• How do we ensure that the workers get the data they need?

• How do we coordinate synchronization among the different workers?

1We note that promising technologies such as quantum or biological computing could
potentially induce a paradigm shift, but they are far from being sufficiently mature to solve
real world problems.



• How do we share partial results from one worker that is needed by an-
other?

• How do we accomplish all of the above in the face of software errors and
hardware faults?

In traditional parallel or distributed programming environments, the devel-
oper needs to explicitly address many (and sometimes, all) of the above issues.
In shared memory programming, the developer needs to explicitly coordinate
access to shared data structures through synchronization primitives such as
mutexes, to explicitly handle process synchronization through devices such as
barriers, and to remain ever vigilant for common problems such as deadlocks
and race conditions. Language extensions, like OpenMP for shared memory
parallelism,2 or libraries implementing the Message Passing Interface (MPI)
for cluster-level parallelism,3 provide logical abstractions that hide details of
operating system synchronization and communications primitives. However,
even with these extensions, developers are still burdened to keep track of how
resources are made available to workers. Additionally, these frameworks are
mostly designed to tackle processor-intensive problems and have only rudimen-
tary support for dealing with very large amounts of input data. When using
existing parallel computing approaches for large-data computation, the pro-
grammer must devote a significant amount of attention to low-level system
details, which detracts from higher-level problem solving.

One of the most significant advantages of MapReduce is that it provides an
abstraction that hides many system-level details from the programmer. There-
fore, a developer can focus on what computations need to be performed, as
opposed to how those computations are actually carried out or how to get
the data to the processes that depend on them. Like OpenMP and MPI,
MapReduce provides a means to distribute computation without burdening
the programmer with the details of distributed computing (but at a different
level of granularity). However, organizing and coordinating large amounts of
computation is only part of the challenge. Large-data processing by definition
requires bringing data and code together for computation to occur—no small
feat for datasets that are terabytes and perhaps petabytes in size! MapReduce
addresses this challenge by providing a simple abstraction for the developer,
transparently handling most of the details behind the scenes in a scalable, ro-
bust, and efficient manner. As we mentioned in Chapter 1, instead of moving
large amounts of data around, it is far more efficient, if possible, to move the
code to the data. This is operationally realized by spreading data across the
local disks of nodes in a cluster and running processes on nodes that hold
the data. The complex task of managing storage in such a processing envi-
ronment is typically handled by a distributed file system that sits underneath
MapReduce.

2http://www.openmp.org/
3http://www.mcs.anl.gov/mpi/



This chapter introduces the MapReduce programming model and the un-
derlying distributed file system. We start in Section 2.1 with an overview of
functional programming, from which MapReduce draws its inspiration. Sec-
tion 2.2 introduces the basic programming model, focusing on mappers and
reducers. Section 2.3 discusses the role of the execution framework in actually
running MapReduce programs (called jobs). Section 2.4 fills in additional de-
tails by introducing partitioners and combiners, which provide greater control
over data flow. MapReduce would not be practical without a tightly-integrated
distributed file system that manages the data being processed; Section 2.5 cov-
ers this in detail. Tying everything together, a complete cluster architecture is
described in Section 2.6 before the chapter ends with a summary.

2.1 Functional Programming Roots

MapReduce has its roots in functional programming, which is exemplified in
languages such as Lisp and ML.4 A key feature of functional languages is the
concept of higher-order functions, or functions that can accept other functions
as arguments. Two common built-in higher order functions are map and fold,
illustrated in Figure 2.1. Given a list, map takes as an argument a function f
(that takes a single argument) and applies it to all elements in a list (the top
part of the diagram). Given a list, fold takes as arguments a function g (that
takes two arguments) and an initial value: g is first applied to the initial value
and the first item in the list, the result of which is stored in an intermediate
variable. This intermediate variable and the next item in the list serve as
the arguments to a second application of g, the results of which are stored in
the intermediate variable. This process repeats until all items in the list have
been consumed; fold then returns the final value of the intermediate variable.
Typically, map and fold are used in combination. For example, to compute
the sum of squares of a list of integers, one could map a function that squares
its argument (i.e., λx.x2) over the input list, and then fold the resulting list
with the addition function (more precisely, λxλy.x + y) using an initial value
of zero.

We can view map as a concise way to represent the transformation of a
dataset (as defined by the function f). In the same vein, we can view fold as an
aggregation operation, as defined by the function g. One immediate observation
is that the application of f to each item in a list (or more generally, to elements
in a large dataset) can be parallelized in a straightforward manner, since each
functional application happens in isolation. In a cluster, these operations can
be distributed across many different machines. The fold operation, on the
other hand, has more restrictions on data locality—elements in the list must
be “brought together” before the function g can be applied. However, many
real-world applications do not require g to be applied to all elements of the
list. To the extent that elements in the list can be divided into groups, the fold

4However, there are important characteristics of MapReduce that make it non-functional
in nature—this will become apparent later.



g g g g g 

f f f f f 

Figure	
  2.1:	
  IllustraPon	
  of	
  map	
  and	
  fold,	
  two	
  higher-­‐order	
  funcPons	
  commonly	
  used	
  together	
  
in	
  funcPonal	
  programming:	
  map	
  takes	
  a	
  funcPon	
  f	
  and	
  applies	
  it	
  to	
  every	
  element	
  in	
  a	
  list,	
  
while	
  fold	
  iteraPvely	
  applies	
  a	
  funcPon	
  g	
  to	
  aggregate	
  results.	
  

Figure 2.1: Illustration of map and fold, two higher-order functions commonly
used together in functional programming: map takes a function f and applies it
to every element in a list, while fold iteratively applies a function g to aggregate
results.

aggregations can also proceed in parallel. Furthermore, for operations that are
commutative and associative, significant efficiencies can be gained in the fold
operation through local aggregation and appropriate reordering.

In a nutshell, we have described MapReduce. The map phase in MapReduce
roughly corresponds to the map operation in functional programming, whereas
the reduce phase in MapReduce roughly corresponds to the fold operation in
functional programming. As we will discuss in detail shortly, the MapReduce
execution framework coordinates the map and reduce phases of processing over
large amounts of data on large clusters of commodity machines.

Viewed from a slightly different angle, MapReduce codifies a generic “recipe”
for processing large datasets that consists of two stages. In the first stage, a
user-specified computation is applied over all input records in a dataset. These
operations occur in parallel and yield intermediate output that is then aggre-
gated by another user-specified computation. The programmer defines these
two types of computations, and the execution framework coordinates the ac-
tual processing (very loosely, MapReduce provides a functional abstraction).
Although such a two-stage processing structure may appear to be very restric-
tive, many interesting algorithms can be expressed quite concisely—especially
if one decomposes complex algorithms into a sequence of MapReduce jobs.
Subsequent chapters in this book focus on how a number of algorithms can be
implemented in MapReduce.

To be precise, MapReduce can refer to three distinct but related concepts.
First, MapReduce is a programming model, which is the sense discussed above.
Second, MapReduce can refer to the execution framework (i.e., the “runtime”)
that coordinates the execution of programs written in this particular style. Fi-



nally, MapReduce can refer to the software implementation of the programming
model and the execution framework: for example, Google’s proprietary imple-
mentation vs. the open-source Hadoop implementation in Java. And in fact,
there are many implementations of MapReduce, e.g., targeted specifically for
multi-core processors [127], for GPGPUs [71], for the CELL architecture [126],
etc. There are some differences between the MapReduce programming model
implemented in Hadoop and Google’s proprietary implementation, which we
will explicitly discuss throughout the book. However, we take a rather Hadoop-
centric view of MapReduce, since Hadoop remains the most mature and acces-
sible implementation to date, and therefore the one most developers are likely
to use.

2.2 Mappers and Reducers

Key-value pairs form the basic data structure in MapReduce. Keys and values
may be primitives such as integers, floating point values, strings, and raw bytes,
or they may be arbitrarily complex structures (lists, tuples, associative arrays,
etc.). Programmers typically need to define their own custom data types,
although a number of libraries such as Protocol Buffers,5 Thrift,6 and Avro7

simplify the task.
Part of the design of MapReduce algorithms involves imposing the key-

value structure on arbitrary datasets. For a collection of web pages, keys may
be URLs and values may be the actual HTML content. For a graph, keys
may represent node ids and values may contain the adjacency lists of those
nodes (see Chapter 5 for more details). In some algorithms, input keys are
not particularly meaningful and are simply ignored during processing, while in
other cases input keys are used to uniquely identify a datum (such as a record
id). In Chapter 3, we discuss the role of complex keys and values in the design
of various algorithms.

In MapReduce, the programmer defines a mapper and a reducer with the
following signatures:

map: (k1, v1)→ [(k2, v2)]
reduce: (k2, [v2])→ [(k3, v3)]

The convention [. . .] is used throughout this book to denote a list. The input
to a MapReduce job starts as data stored on the underlying distributed file
system (see Section 2.5). The mapper is applied to every input key-value pair
(split across an arbitrary number of files) to generate an arbitrary number of
intermediate key-value pairs. The reducer is applied to all values associated
with the same intermediate key to generate output key-value pairs.8 Implicit

5 https://github.com/google/protobuf
6 http://thrift.apache.org/
7 http://avro.apache.org/
8This characterization, while conceptually accurate, is a slight simplification. See Sec-

tion 2.6 for more details.



Shuffle and Sort: aggregate values by keys 

A B C D E F α β γ δ ε ζ 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

a 1 5 b 2 7 c 2 9 8 

X 5 Y 7 Z 9 

mapper mapper mapper mapper 

reducer reducer reducer 

Figure	
  2.2:	
  Simplified	
  view	
  of	
  MapReduce.	
  Mappers	
  are	
  applied	
  to	
  all	
  input	
  key-­‐value	
  pairs,	
  
which	
  generate	
  an	
  arbitrary	
  number	
  of	
  intermediate	
  key-­‐value	
  pairs.	
  Reducers	
  are	
  applied	
  to	
  
all	
  values	
  associated	
  with	
  the	
  same	
  key.	
  Between	
  the	
  map	
  and	
  reduce	
  phases	
  lies	
  a	
  barrier	
  
that	
  involves	
  a	
  large	
  distributed	
  sort	
  and	
  group	
  by.	
  

Figure 2.2: Simplified view of MapReduce. Mappers are applied to all input
key-value pairs, which generate an arbitrary number of intermediate key-value
pairs. Reducers are applied to all values associated with the same key. Between
the map and reduce phases lies a barrier that involves a large distributed sort
and group by.

between the map and reduce phases is a distributed “group by” operation on
intermediate keys. Intermediate data arrive at each reducer in order, sorted
by the key. However, no ordering relationship is guaranteed for keys across
different reducers. Output key-value pairs from each reducer are written per-
sistently back onto the distributed file system (whereas intermediate key-value
pairs are transient and not preserved). The output ends up in r files on the
distributed file system, where r is the number of reducers. For the most part,
there is no need to consolidate reducer output, since the r files often serve
as input to yet another MapReduce job. Figure 2.2 illustrates this two-stage
processing structure.

A simple word count algorithm in MapReduce is shown in Algorithm 2.1.
This algorithm counts the number of occurrences of every word in a text collec-
tion, which may be the first step in, for example, building a unigram language
model (i.e., probability distribution over words in a collection). Input key-
values pairs take the form of (docid, doc) pairs stored on the distributed file
system, where the former is a unique identifier for the document, and the lat-
ter is the text of the document itself. The mapper takes an input key-value
pair, tokenizes the document, and emits an intermediate key-value pair for ev-
ery word: the word itself serves as the key, and the integer one serves as the
value (denoting that we’ve seen the word once). The MapReduce execution
framework guarantees that all values associated with the same key are brought



Algorithm 2.1 Word count

The mapper emits an intermediate key-value pair for each word in an input
document. The reducer sums up all counts for each word.

1 class Mapper {

2 def map(key: Long, value: Text) = {

3 for (word <- tokenize(value)) {

4 emit(word, 1)

5 }

6 }

7

8 class Reducer {

9 def reduce(key: Text, values: Iterable[Int]) = {

10 for (value <- values) {

11 sum += value

12 }

13 emit(key, sum)

14 }

15 }

together in the reducer. Therefore, in our word count algorithm, we simply
need to sum up all counts (ones) associated with each word. The reducer does
exactly this, and emits final key-value pairs with the word as the key, and the
count as the value. Final output is written to the distributed file system, one
file per reducer. Words within each file will be sorted by alphabetical order,
and each file will contain roughly the same number of words. The partitioner,
which we discuss later in Section 2.4, controls the assignment of words to re-
ducers. The output can be examined by the programmer or used as input to
another MapReduce program.

There are some differences between the Hadoop implementation of Map-
Reduce and Google’s implementation.9 In Hadoop, the reducer is presented
with a key and an iterator over all values associated with the particular key.
The values are arbitrarily ordered. Google’s implementation allows the pro-
grammer to specify a secondary sort key for ordering the values (if desired)—in
which case values associated with each key would be presented to the devel-
oper’s reduce code in sorted order. Later in Section 3.4 we discuss how to
overcome this limitation in Hadoop to perform secondary sorting. Another dif-
ference: in Google’s implementation the programmer is not allowed to change
the key in the reducer. That is, the reducer output key must be exactly the
same as the reducer input key. In Hadoop, there is no such restriction, and the
reducer can emit an arbitrary number of output key-value pairs (with different
keys).

To provide a bit more implementation detail: pseudo-code provided in this
book roughly mirrors how MapReduce programs are written in Hadoop. Map-
pers and reducers are objects that implement the map and reduce methods,

9Personal communication, Jeff Dean.



respectively. In Hadoop, a mapper object is initialized for each map task (as-
sociated with a particular sequence of key-value pairs called an input split)
and the map method is called on each key-value pair by the execution frame-
work. In configuring a MapReduce job, the programmer provides a hint on the
number of map tasks to run, but the execution framework (see next section)
makes the final determination based on the physical layout of the data (more
details in Section 2.5 and Section 2.6). The situation is similar for the re-
duce phase: a reducer object is initialized for each reduce task, and the reduce

method is called once per intermediate key. In contrast with the number of
map tasks, the programmer can precisely specify the number of reduce tasks.
We will return to discuss the details of Hadoop job execution in Section 2.6,
which is dependent on an understanding of the distributed file system (covered
in Section 2.5). To reiterate: although the presentation of algorithms in this
book closely mirrors the way they would be implemented in Hadoop, our fo-
cus is on algorithm design and conceptual understanding—not actual Hadoop
programming. For that, we would recommend Tom White’s book [154].

What are the restrictions on mappers and reducers? Mappers and reduc-
ers can express arbitrary computations over their inputs. However, one must
generally be careful about use of external resources since multiple mappers or
reducers may be contending for those resources. For example, it may be unwise
for a mapper to query an external SQL database, since that would introduce a
scalability bottleneck on the number of map tasks that could be run in parallel
(since they might all be simultaneously querying the database).10 In general,
mappers can emit an arbitrary number of intermediate key-value pairs, and
they need not be of the same type as the input key-value pairs. Similarly,
reducers can emit an arbitrary number of final key-value pairs, and they can
differ in type from the intermediate key-value pairs. Although not permitted
in functional programming, mappers and reducers can have side effects. This
is a powerful and useful feature: for example, preserving state across multiple
inputs is central to the design of many MapReduce algorithms (see Chapter 3).
Such algorithms can be understood as having side effects that only change
state that is internal to the mapper or reducer. While the correctness of such
algorithms may be more difficult to guarantee (since the function’s behavior
depends not only on the current input but on previous inputs), most potential
synchronization problems are avoided since internal state is private only to in-
dividual mappers and reducers. In other cases (see Section 4.4 and Section 7.5),
it may be useful for mappers or reducers to have external side effects, such as
writing files to the distributed file system. Since many mappers and reducers
are run in parallel, and the distributed file system is a shared global resource,
special care must be taken to ensure that such operations avoid synchroniza-
tion conflicts. One strategy is to write a temporary file that is renamed upon
successful completion of the mapper or reducer [45].

In addition to the “canonical” MapReduce processing flow, other variations
are also possible. MapReduce programs can contain no reducers, in which case

10Unless, of course, the database itself is highly scalable.



mapper output is directly written to disk (one file per mapper). For embar-
rassingly parallel problems, e.g., parse a large text collection or independently
analyze a large number of images, this would be a common pattern. The
converse—a MapReduce program with no mappers—is not possible, although
in some cases it is useful for the mapper to implement the identity function
and simply pass input key-value pairs to the reducers. This has the effect of
sorting and regrouping the input for reduce-side processing. Similarly, in some
cases it is useful for the reducer to implement the identity function, in which
case the program simply sorts and groups mapper output. Finally, running
identity mappers and reducers has the effect of regrouping and resorting the
input data (which is sometimes useful).

Although in the most common case, input to a MapReduce job comes from
data stored on the distributed file system and output is written back to the
distributed file system, any other system that satisfies the proper abstractions
can serve as a data source or sink. With Google’s MapReduce implementation,
BigTable [34], a sparse, distributed, persistent multidimensional sorted map,
is frequently used as a source of input and as a store of MapReduce output.
HBase is an open-source BigTable clone and has similar capabilities. Also,
Hadoop has been integrated with existing MPP (massively parallel processing)
relational databases, which allows a programmer to write MapReduce jobs over
database rows and dump output into a new database table. Finally, in some
cases MapReduce jobs may not consume any input at all (e.g., computing π)
or may only consume a small amount of data (e.g., input parameters to many
instances of processor-intensive simulations running in parallel).

2.3 The Execution Framework

One of the most important idea behind MapReduce is separating the what
of distributed processing from the how. A MapReduce program, referred to
as a job, consists of code for mappers and reducers (as well as combiners and
partitioners to be discussed in the next section) packaged together with config-
uration parameters (such as where the input lies and where the output should
be stored). The developer submits the job to the submission node of a cluster
(in Hadoop, this is called the jobtracker) and execution framework (sometimes
called the “runtime”) takes care of everything else: it transparently handles all
other aspects of distributed code execution, on clusters ranging from a single
node to a few thousand nodes. Specific responsibilities include:

Scheduling. Each MapReduce job is divided into smaller units called tasks
(see Section 2.6 for more details). For example, a map task may be responsible
for processing a certain block of input key-value pairs (called an input split
in Hadoop); similarly, a reduce task may handle a portion of the intermediate
key space. It is not uncommon for MapReduce jobs to have thousands of
individual tasks that need to be assigned to nodes in the cluster. In large jobs,
the total number of tasks may exceed the number of tasks that can be run on



the cluster concurrently, making it necessary for the scheduler to maintain some
sort of a task queue and to track the progress of running tasks so that waiting
tasks can be assigned to nodes as they become available. Another aspect of
scheduling involves coordination among tasks belonging to different jobs (e.g.,
from different users). How can a large, shared resource support several users
simultaneously in a predictable, transparent, policy-driven fashion? There has
been some recent work along these lines in the context of Hadoop [131, 160].

Speculative execution is an optimization implemented by both Hadoop and
Google’s MapReduce implementation (called “backup tasks” [45]). Due to the
barrier between the map and reduce tasks, the map phase of a job is only as fast
as the slowest map task. Similarly, the completion time of a job is bounded
by the running time of the slowest reduce task. As a result, the speed of a
MapReduce job is sensitive to what are known as stragglers, or tasks that take
an usually long time to complete. One cause of stragglers is flaky hardware:
for example, a machine that is suffering from recoverable errors may become
significantly slower. With speculative execution, an identical copy of the same
task is executed on a different machine, and the framework simply uses the
result of the first task attempt to finish. Zaharia et al. [161] presented different
execution strategies in a recent paper, and Google has reported that speculative
execution can improve job running times by 44% [45]. Although in Hadoop
both map and reduce tasks can be speculatively executed, the common wisdom
is that the technique is more helpful for map tasks than reduce tasks, since each
copy of the reduce task needs to pull data over the network. Note, however,
that speculative execution cannot adequately address another common cause
of stragglers: skew in the distribution of values associated with intermediate
keys (leading to reduce stragglers). In text processing we often observe Zipfian
distributions, which means that the task or tasks responsible for processing the
most frequent few elements will run much longer than the typical task. Better
local aggregation, discussed in the next chapter, is one possible solution to this
problem.

Data/code co-location. The phrase data distribution is misleading, since
one of the key ideas behind MapReduce is to move the code, not the data.
However, the more general point remains—in order for computation to occur,
we need to somehow feed data to the code. In MapReduce, this issue is in-
extricably intertwined with scheduling and relies heavily on the design of the
underlying distributed file system.11 To achieve data locality, the scheduler
starts tasks on the node that holds a particular block of data (i.e., on its local
drive) needed by the task. This has the effect of moving code to the data. If
this is not possible (e.g., a node is already running too many tasks), new tasks
will be started elsewhere, and the necessary data will be streamed over the
network. An important optimization here is to prefer nodes that are on the

11In the canonical case, that is. Recall that MapReduce may receive its input from other
sources.



same rack in the datacenter as the node holding the relevant data block, since
inter-rack bandwidth is significantly less than intra-rack bandwidth.

Synchronization. In general, synchronization refers to the mechanisms by
which multiple concurrently running processes “join up”, for example, to share
intermediate results or otherwise exchange state information. In MapReduce,
synchronization is accomplished by a barrier between the map and reduce
phases of processing. Intermediate key-value pairs must be grouped by key,
which is accomplished by a large distributed sort involving all the nodes that
executed map tasks and all the nodes that will execute reduce tasks. This
necessarily involves copying intermediate data over the network, and therefore
the process is commonly known as “shuffle and sort”. A MapReduce job with
m mappers and r reducers involves up to m× r distinct copy operations, since
each mapper may have intermediate output going to every reducer.

Note that the reduce computation cannot start until all the mappers have
finished emitting key-value pairs and all intermediate key-value pairs have been
shuffled and sorted, since the execution framework cannot otherwise guarantee
that all values associated with the same key have been gathered. This is an
important departure from functional programming: in a fold operation, the ag-
gregation function g is a function of the intermediate value and the next item
in the list—which means that values can be lazily generated and aggregation
can begin as soon as values are available. In contrast, the reducer in Map-
Reduce receives all values associated with the same key at once. However, it is
possible to start copying intermediate key-value pairs over the network to the
nodes running the reducers as soon as each mapper finishes—this is a common
optimization and implemented in Hadoop.

Error and fault handling. The MapReduce execution framework must ac-
complish all the tasks above in an environment where errors and faults are
the norm, not the exception. Since MapReduce was explicitly designed around
low-end commodity servers, the runtime must be especially resilient. In large
clusters, disk failures are common [123] and RAM experiences more errors than
one might expect [135]. Datacenters suffer from both planned outages (e.g.,
system maintenance and hardware upgrades) and unexpected outages (e.g.,
power failure, connectivity loss, etc.).

And that’s just hardware. No software is bug free—exceptions must be ap-
propriately trapped, logged, and recovered from. Large-data problems have a
penchant for uncovering obscure corner cases in code that is otherwise thought
to be bug-free. Furthermore, any sufficiently large dataset will contain cor-
rupted data or records that are mangled beyond a programmer’s imagination—
resulting in errors that one would never think to check for or trap. The Map-
Reduce execution framework must thrive in this hostile environment.



2.4 Partitioners and Combiners

We have thus far presented a simplified view of MapReduce. There are two
additional elements that complete the programming model: partitioners and
combiners.

Partitioners are responsible for dividing up the intermediate key space and
assigning intermediate key-value pairs to reducers. In other words, the par-
titioner specifies the task to which an intermediate key-value pair must be
copied. Within each reducer, keys are processed in sorted order (which is how
the “group by” is implemented). The simplest partitioner involves computing
the hash value of the key and then taking the mod of that value with the
number of reducers. This assigns approximately the same number of keys to
each reducer (dependent on the quality of the hash function). Note, however,
that the partitioner only considers the key and ignores the value—therefore,
a roughly-even partitioning of the key space may nevertheless yield large dif-
ferences in the number of key-values pairs sent to each reducer (since different
keys may have different numbers of associated values). This imbalance in the
amount of data associated with each key is relatively common in many text
processing applications due to the Zipfian distribution of word occurrences.

Combiners are an optimization in MapReduce that allow for local aggrega-
tion before the shuffle and sort phase. We can motivate the need for combiners
by considering the word count algorithm in Algorithm 2.1, which emits a key-
value pair for each word in the collection. Furthermore, all these key-value
pairs need to be copied across the network, and so the amount of intermediate
data will be larger than the input collection itself. This is clearly inefficient.
One solution is to perform local aggregation on the output of each mapper,
i.e., to compute a local count for a word over all the documents processed by
the mapper. With this modification (assuming the maximum amount of local
aggregation possible), the number of intermediate key-value pairs will be at
most the number of unique words in the collection times the number of map-
pers (and typically far smaller because each mapper may not encounter every
word).

The combiner in MapReduce supports such an optimization. One can think
of combiners as “mini-reducers” that take place on the output of the mappers,
prior to the shuffle and sort phase. Each combiner operates in isolation and
therefore does not have access to intermediate output from other mappers. The
combiner is provided keys and values associated with each key (the same types
as the mapper output keys and values). Critically, one cannot assume that a
combiner will have the opportunity to process all values associated with the
same key. The combiner can emit any number of key-value pairs, but the keys
and values must be of the same type as the mapper output (same as the reducer
input).12 In cases where an operation is both associative and commutative

12A note on the implementation of combiners in Hadoop: by default, the execution frame-
work reserves the right to use combiners at its discretion. In reality, this means that a
combiner may be invoked zero, one, or multiple times. In addition, combiners in Hadoop
may actually be invoked in the reduce phase, i.e., after key-value pairs have been copied



(e.g., addition or multiplication), reducers can directly serve as combiners. In
general, however, reducers and combiners are not interchangeable.

In many cases, proper use of combiners can spell the difference between an
impractical algorithm and an efficient algorithm. This topic will be discussed
in Section 3.1, which focuses on various techniques for local aggregation. It
suffices to say for now that a combiner can significantly reduce the amount
of data that needs to be copied over the network, resulting in much faster
algorithms.

The complete MapReduce model is shown in Figure 2.3. Output of the
mappers are processed by the combiners, which perform local aggregation to
cut down on the number of intermediate key-value pairs. The partitioner deter-
mines which reducer will be responsible for processing a particular key, and the
execution framework uses this information to copy the data to the right loca-
tion during the shuffle and sort phase.13 Therefore, a complete MapReduce job
consists of code for the mapper, reducer, combiner, and partitioner, along with
job configuration parameters. The execution framework handles everything
else.

2.5 The Distributed File System

So far, we have mostly focused on the processing aspect of data-intensive pro-
cessing, but it is important to recognize that without data, there is nothing
to compute on. In high-performance computing (HPC) and many traditional
cluster architectures, storage is viewed as a distinct and separate component
from computation. Implementations vary widely, but network-attached storage
(NAS) and storage area networks (SAN) are common; supercomputers often
have dedicated subsystems for handling storage (separate nodes, and often even
separate networks). Regardless of the details, the processing cycle remains the
same at a high level: the compute nodes fetch input from storage, load the data
into memory, process the data, and then write back the results (with perhaps
intermediate checkpointing for long-running processes).

As dataset sizes increase, more compute capacity is required for process-
ing. But as compute capacity grows, the link between the compute nodes and
the storage becomes a bottleneck. At that point, one could invest in higher
performance but more expensive networks (e.g., 10 gigabit Ethernet) or special-
purpose interconnects such as InfiniBand (even more expensive). In most cases,
this is not a cost-effective solution, as the price of networking equipment in-
creases non-linearly with performance (e.g., a switch with ten times the capac-
ity is usually more than ten times more expensive). Alternatively, one could
abandon the separation of computation and storage as distinct components in
a cluster. The distributed file system (DFS) that underlies MapReduce adopts

over to the reducer, but before the user reducer code runs. As a result, combiners must be
carefully written so that they can be executed in these different environments. Section 3.1
discusses this in more detail.

13In Hadoop, partitioners are actually executed before combiners, so while Figure 2.3 is
conceptually accurate, it doesn’t precisely describe the Hadoop implementation.



X 5 Y 7 Z 9 

A B C D E F α β γ δ ε ζ 

Shuffle and Sort: aggregate values by keys 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

a 1 5 b 2 7 c 2 9 8 

b a 1 2 c 9 a c 5 2 b c 7 8 

combiner combiner combiner combiner 

partitioner partitioner partitioner partitioner 

mapper mapper mapper mapper 

reducer reducer reducer 

Figure	
  2.4:	
  Complete	
  view	
  of	
  MapReduce,	
  illustraPng	
  combiners	
  and	
  parPPoners	
  in	
  addiPon	
  
to	
  mappers	
  and	
  reducers.	
  Combiners	
  can	
  be	
  viewed	
  as	
  “mini-­‐reducers”	
  in	
  the	
  map	
  phase.	
  
ParPPoners	
  determine	
  which	
  reducer	
  is	
  responsible	
  for	
  a	
  parPcular	
  key.	
  

Figure 2.3: Complete view of MapReduce, illustrating combiners and parti-
tioners in addition to mappers and reducers. Combiners can be viewed as
“mini-reducers” in the map phase. Partitioners determine which reducer is
responsible for a particular key.

exactly this approach. The Google File System (GFS) [57] supports Google’s
proprietary implementation of MapReduce; in the open-source world, HDFS
(Hadoop Distributed File System) is an open-source implementation of GFS
that supports Hadoop. Although MapReduce doesn’t necessarily require the
distributed file system, it is difficult to realize many of the advantages of the
programming model without a storage substrate that behaves much like the
DFS.14

Of course, distributed file systems are not new [74, 32, 7, 147, 133]. The
MapReduce distributed file system builds on previous work but is specifically
adapted to large-data processing workloads, and therefore departs from previ-
ous architectures in certain respects (see discussion by Ghemawat et al. [57]
in the original GFS paper.). The main idea is to divide user data into blocks
and replicate those blocks across the local disks of nodes in the cluster. Block-

14However, there is evidence that existing POSIX-based distributed cluster file systems
(e.g., GPFS or PVFS) can serve as a replacement for HDFS, when properly tuned or modified
for MapReduce workloads [146, 6]. This, however, remains an experimental use case.



(file name, block id) 

(block id, block location) 

instructions to datanode 

datanode state 
(block id, byte range) 

block data 

HDFS namenode 

HDFS datanode 

Linux file system 

… 

HDFS datanode 

Linux file system 

… 

File namespace 
/foo/bar 

block 3df2 

Application 

HDFS Client 

Figure	
  2.5:	
  The	
  architecture	
  of	
  HDFS.	
  The	
  namenode	
  (master)	
  is	
  responsible	
  for	
  maintaining	
  
the	
  le	
  namespace	
  and	
  direcPng	
  clients	
  to	
  datanodes	
  (slaves)	
  that	
  actually	
  hold	
  data	
  blocks	
  
containing	
  user	
  data.	
  

Figure 2.4: The architecture of HDFS. The namenode (master) is responsible
for maintaining the file namespace and directing clients to datanodes (slaves)
that actually hold data blocks containing user data.

ing data, of course, is not a new idea, but DFS blocks are significantly larger
than block sizes in typical single-machine file systems (64 MB by default). The
distributed file system adopts a master–slave architecture in which the mas-
ter maintains the file namespace (metadata, directory structure, file to block
mapping, location of blocks, and access permissions) and the slaves manage
the actual data blocks. In GFS, the master is called the GFS master, and the
slaves are called GFS chunkservers. In Hadoop, the same roles are filled by the
namenode and datanodes, respectively.15 This book adopts the Hadoop termi-
nology, although for most basic file operations GFS and HDFS work much the
same way. The architecture of HDFS is shown in Figure 2.4, redrawn from a
similar diagram describing GFS [57].

In HDFS, an application client wishing to read a file (or a portion thereof)
must first contact the namenode to determine where the actual data is stored.
In response to the client request, the namenode returns the relevant block id
and the location where the block is held (i.e., which datanode). The client
then contacts the datanode to retrieve the data. Blocks are themselves stored
on standard single-machine file systems, so HDFS lies on top of the standard
OS stack (e.g., Linux). An important feature of the design is that data is
never moved through the namenode. Instead, all data transfer occurs directly
between clients and datanodes; communications with the namenode only in-
volves transfer of metadata.

By default, HDFS stores three separate copies of each data block to en-
sure both reliability, availability, and performance. In large clusters, the three

15To be precise, namenode and datanode may refer to physical machines in a cluster, or
they may refer to daemons running on those machines providing the relevant services.



replicas are spread across different physical racks, so HDFS is resilient towards
two common failure scenarios: individual datanode crashes and failures in net-
working equipment that bring an entire rack offline. Replicating blocks across
physical machines also increases opportunities to co-locate data and processing
in the scheduling of MapReduce jobs, since multiple copies yield more oppor-
tunities to exploit locality. The namenode is in periodic communication with
the datanodes to ensure proper replication of all the blocks: if there aren’t
enough replicas (e.g., due to disk or machine failures or to connectivity losses
due to networking equipment failures), the namenode directs the creation of
additional copies;16 if there are too many replicas (e.g., a repaired node rejoins
the cluster), extra copies are discarded.

To create a new file and write data to HDFS, the application client first
contacts the namenode, which updates the file namespace after checking per-
missions and making sure the file doesn’t already exist. The namenode allocates
a new block on a suitable datanode, and the application is directed to stream
data directly to it. From the initial datanode, data is further propagated to
additional replicas. In the most recent release of Hadoop as of this writing
(release 0.20.2), files are immutable—they cannot be modified after creation.
There are current plans to officially support file appends in the near future,
which is a feature already present in GFS.

In summary, the HDFS namenode has the following responsibilities:

• Namespace management. The namenode is responsible for maintaining
the file namespace, which includes metadata, directory structure, file to
block mapping, location of blocks, and access permissions. These data are
held in memory for fast access and all mutations are persistently logged.

• Coordinating file operations. The namenode directs application clients to
datanodes for read operations, and allocates blocks on suitable datanodes
for write operations. All data transfers occur directly between clients and
datanodes. When a file is deleted, HDFS does not immediately reclaim
the available physical storage; rather, blocks are lazily garbage collected.

• Maintaining overall health of the file system. The namenode is in pe-
riodic contact with the datanodes via heartbeat messages to ensure the
integrity of the system. If the namenode observes that a data block is
under-replicated (fewer copies are stored on datanodes than the desired
replication factor), it will direct the creation of new replicas. Finally, the
namenode is also responsible for rebalancing the file system.17 During the
course of normal operations, certain datanodes may end up holding more
blocks than others; rebalancing involves moving blocks from datanodes
with more blocks to datanodes with fewer blocks. This leads to better
load balancing and more even disk utilization.

16Note that the namenode coordinates the replication process, but data transfer occurs
directly from datanode to datanode.

17In Hadoop, this is a manually-invoked process.



Since GFS and HDFS were specifically designed to support Google’s propri-
etary and the open-source implementation of MapReduce, respectively, they
were designed with a number of assumptions about the operational environ-
ment, which in turn influenced the design of the systems. Understanding these
choices is critical to designing effective MapReduce algorithms:

• The file system stores a relatively modest number of large files. The
definition of “modest” varies by the size of the deployment, but in HDFS
multi-gigabyte files are common (and even encouraged). There are several
reasons why lots of small files are to be avoided. Since the namenode
must hold all file metadata in memory, this presents an upper bound
on both the number of files and blocks that can be supported.18 Large
multi-block files represent a more efficient use of namenode memory than
many single-block files (each of which consumes less space than a single
block size). In addition, mappers in a MapReduce job use individual
files as a basic unit for splitting input data. At present, there is no
default mechanism in Hadoop that allows a mapper to process multiple
files. As a result, mapping over many small files will yield as many map
tasks as there are files. This results in two potential problems: first, the
startup costs of mappers may become significant compared to the time
spent actually processing input key-value pairs; second, this may result
in an excessive amount of across-the-network copy operations during the
“shuffle and sort” phase (recall that a MapReduce job with m mappers
and r reducers involves up to m× r distinct copy operations).

• Workloads are batch oriented, dominated by long streaming reads and
large sequential writes. As a result, high sustained bandwidth is more
important than low latency. This exactly describes the nature of Map-
Reduce jobs, which are batch operations on large amounts of data. Due
to the common-case workload, both HDFS and GFS do not implement
any form of data caching.19

• Applications are aware of the characteristics of the distributed file system.
Neither HDFS nor GFS present a general POSIX-compliant API, but
rather support only a subset of possible file operations. This simplifies
the design of the distributed file system, and in essence pushes part of
the data management onto the end application. One rationale for this
decision is that each application knows best how to handle data specific
to that application, for example, in terms of resolving inconsistent states
and optimizing the layout of data structures.

• The file system is deployed in an environment of cooperative users. There
is no discussion of security in the original GFS paper, but HDFS explic-
itly assumes a datacenter environment where only authorized users have

18According to Dhruba Borthakur in a post to the Hadoop mailing list on 6/8/2008, each
block in HDFS occupies about 150 bytes of memory on the namenode.

19However, since the distributed file system is built on top of a standard operating system
such as Linux, there is still OS-level caching.



access. File permissions in HDFS are only meant to prevent unintended
operations and can be easily circumvented.20

• The system is built from unreliable but inexpensive commodity com-
ponents. As a result, failures are the norm rather than the exception.
HDFS is designed around a number of self-monitoring and self-healing
mechanisms to robustly cope with common failure modes.

Finally, some discussion is necessary to understand the single-master design of
HDFS and GFS. It has been demonstrated that in large-scale distributed sys-
tems, simultaneously providing consistency, availability, and partition tolerance
is impossible—this is Brewer’s so-called CAP Theorem [58]. Since partitioning
is unavoidable in large-data systems, the real tradeoff is between consistency
and availability. A single-master design trades availability for consistency and
significantly simplifies implementation. If the master (HDFS namenode or GFS
master) goes down, the entire file system becomes unavailable, which trivially
guarantees that the file system will never be in an inconsistent state. An al-
ternative design might involve multiple masters that jointly manage the file
namespace—such an architecture would increase availability (if one goes down,
another can step in) at the cost of consistency, not to mention requiring a more
complex implementation (cf. [4, 105]).

The single-master design of GFS and HDFS is a well-known weakness, since
if the master goes offline, the entire file system and all MapReduce jobs run-
ning on top of it will grind to a halt. This weakness is mitigated in part by
the lightweight nature of file system operations. Recall that no data is ever
moved through the namenode and that all communication between clients and
datanodes involve only metadata. Because of this, the namenode rarely is the
bottleneck, and for the most part avoids load-induced crashes. In practice,
this single point of failure is not as severe a limitation as it may appear—with
diligent monitoring of the namenode, mean time between failure measured
in months are not uncommon for production deployments. Furthermore, the
Hadoop community is well-aware of this problem and has developed several
reasonable workarounds—for example, a warm standby namenode that can be
quickly switched over when the primary namenode fails. The open source en-
vironment and the fact that many organizations already depend on Hadoop
for production systems virtually guarantees that more effective solutions will
be developed over time.

2.6 Hadoop Cluster Architecture

Putting everything together, the architecture of a complete Hadoop cluster is
shown in Figure 2.5. The HDFS namenode runs the namenode daemon. The
job submission node runs the jobtracker, which is the single point of contact
for a client wishing to execute a MapReduce job. The jobtracker monitors the

20However, there are existing plans to integrate Kerberos into Hadoop/HDFS.



datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

namenode 

namenode daemon 

job submission node 

jobtracker 

Figure	
  2.6:	
  Architecture	
  of	
  a	
  complete	
  Hadoop	
  cluster,	
  which	
  consists	
  of	
  three	
  separate	
  
components:	
  the	
  HDFS	
  master	
  (called	
  the	
  namenode),	
  the	
  job	
  submission	
  node	
  (called	
  the	
  
jobtracker),	
  and	
  many	
  slave	
  nodes	
  (three	
  shown	
  here).	
  Each	
  of	
  the	
  slave	
  nodes	
  runs	
  a	
  
tasktracker	
  for	
  execuPng	
  map	
  and	
  reduce	
  tasks	
  and	
  a	
  datanode	
  daemon	
  for	
  serving	
  HDFS	
  data.	
  

Figure 2.5: Architecture of a complete Hadoop cluster, which consists of three
separate components: the HDFS master (called the namenode), the job sub-
mission node (called the jobtracker), and many slave nodes (three shown here).
Each of the slave nodes runs a tasktracker for executing map and reduce tasks
and a datanode daemon for serving HDFS data.

progress of running MapReduce jobs and is responsible for coordinating the
execution of the mappers and reducers. Typically, these services run on two
separate machines, although in smaller clusters they are often co-located. The
bulk of a Hadoop cluster consists of slave nodes (only three of which are shown
in the figure) that run both a tasktracker, which is responsible for actually
running user code, and a datanode daemon, for serving HDFS data.

A Hadoop MapReduce job is divided up into a number of map tasks and
reduce tasks. Tasktrackers periodically send heartbeat messages to the job-
tracker that also doubles as a vehicle for task allocation. If a tasktracker is
available to run tasks (in Hadoop parlance, has empty task slots), the return
acknowledgment of the tasktracker heartbeat contains task allocation informa-
tion. The number of reduce tasks is equal to the number of reducers specified
by the programmer. The number of map tasks, on the other hand, depends
on many factors: the number of mappers specified by the programmer serves
as a hint to the execution framework, but the actual number of tasks depends
on both the number of input files and the number of HDFS data blocks occu-
pied by those files. Each map task is assigned a sequence of input key-value
pairs, called an input split in Hadoop. Input splits are computed automatically
and the execution framework strives to align them to HDFS block boundaries
so that each map task is associated with a single data block. In scheduling
map tasks, the jobtracker tries to take advantage of data locality—if possi-
ble, map tasks are scheduled on the slave node that holds the input split, so
that the mapper will be processing local data. The alignment of input splits
with HDFS block boundaries simplifies task scheduling. If it is not possible to



run a map task on local data, it becomes necessary to stream input key-value
pairs across the network. Since large clusters are organized into racks, with far
greater intra-rack bandwidth than inter-rack bandwidth, the execution frame-
work strives to at least place map tasks on a rack which has a copy of the data
block.

Although conceptually in MapReduce one can think of the mapper being
applied to all input key-value pairs and the reducer being applied to all values
associated with the same key, actual job execution is a bit more complex. In
Hadoop, mappers are Java objects with a map method (among others). A map-
per object is instantiated for every map task by the tasktracker. The life-cycle
of this object begins with instantiation, where a hook is provided in the API
to run programmer-specified code. This means that mappers can read in “side
data”, providing an opportunity to load state, static data sources, dictionaries,
etc. After initialization, the map method is called (by the execution framework)
on all key-value pairs in the input split. Since these method calls occur in the
context of the same Java object, it is possible to preserve state across multiple
input key-value pairs within the same map task—this is an important property
to exploit in the design of MapReduce algorithms, as we will see in the next
chapter. After all key-value pairs in the input split have been processed, the
mapper object provides an opportunity to run programmer-specified termina-
tion code. This, too, will be important in the design of MapReduce algorithms.

The actual execution of reducers is similar to that of the mappers. Each
reducer object is instantiated for every reduce task. The Hadoop API provides
hooks for programmer-specified initialization and termination code. After ini-
tialization, for each intermediate key in the partition (defined by the parti-
tioner), the execution framework repeatedly calls the reduce method with an
intermediate key and an iterator over all values associated with that key. The
programming model also guarantees that intermediate keys will be presented
to the reduce method in sorted order. Since this occurs in the context of a
single object, it is possible to preserve state across multiple intermediate keys
(and associated values) within a single reduce task. Once again, this property
is critical in the design of MapReduce algorithms and will be discussed in the
next chapter.

2.7 Summary

This chapter provides a basic overview of the MapReduce programming model,
starting with its roots in functional programming and continuing with a descrip-
tion of mappers, reducers, partitioners, and combiners. Significant attention is
also given to the underlying distributed file system, which is a tightly-integrated
component of the MapReduce environment. Given this basic understanding,
we now turn our attention to the design of MapReduce algorithms.


